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ABSTRACT 

This thesis concerns the effective and safe software reuse in safety-critical 

system-of-systems. Software reuse offers many unutilized benefits such as achieving 

rapid system development, saving resources and time, and keeping up technologically in 

an increasingly advancing global environment. System software needs to be designed for 

both reuse and safety, and available information needs to be shared effectively. We 

introduce a process neutral framework for software reuse in safety-critical system of 

systems. That framework consists of four elements: organizational factors, component 

attributes, component specification, and safety analysis. We developed a model (C5RA) 

to capture the relevant component information and assist in specification matching. We 

conducted a survey of software safety metrics, created metrics, and developed a ranking. 

We then applied the framework utilizing the reuse of a generic avionics software 

component. Our key findings are that congruence between all elements is required; 

software should posses certain attributes with metrics that support a safe design; software 

component information can be specified using C5RA; and a process identified a system-

of-systems hazard analysis for software reuse. The framework outlined provides a 

solution that enables effective software reuse in safety-critical system of systems.  

 



 vi

THIS PAGE INTENTIONALLY LEFT BLANK 



 vii

TABLE OF CONTENTS 

I. INTRODUCTION........................................................................................................1 
A. THE EVOLUTION OF SOFTWARE REUSE.............................................1 
B. CONCEPTS AND DEFINITIONS.................................................................4 

1. Software Reuse .....................................................................................4 
2. System Safety........................................................................................6 
3. Software Safety.....................................................................................9 
4.  Safety Critical Software ....................................................................10 
5. Safety Critical Environment .............................................................12 
6. System of Systems ..............................................................................12 
7. Safety-Critical System of Systems ....................................................13 
8.  Framework for Software Reuse........................................................13 

II. THE FEDERAL AVIATION ADMINISTRATION APPROACH TO 
SOFTWARE REUSE ................................................................................................15 
A. DO-178B SOFTWARE CONSIDERATIONS IN AIRBORNE 

SYSTEMS AND EQUIPMENT CERTIFICATION..................................15 
1. Overview .............................................................................................15 

B. FAA AC20-148 REUSABLE SOFTWARE COMPONENTS (RSC) .......16 
1. Overview .............................................................................................16 

III. FRAMEWORK FOR SOFTWARE REUSE IN SAFETY-CRITICAL 
SYSTEM OF SYSTEMS...........................................................................................23 
A. OVERVIEW...................................................................................................23 
B. ORGANIZATIONAL FACTORS................................................................25 

1. Culture ................................................................................................25 
2. People ..................................................................................................26 
3. Structure .............................................................................................28 
4. Reuse Domain.....................................................................................29 
5. Reuse Potential ...................................................................................29 
6. Reuse Capability ................................................................................29 
7. Policies, Processes and Practices ......................................................30 
8. Reuse Metrics .....................................................................................33 
9. Conclusion ..........................................................................................34 

C. REUSABLE SOFTWARE COMPONENT ATTRIBUTES......................34 
1. Overview .............................................................................................34 
2. Definition of Software Component...................................................35 
3. Component Attributes .......................................................................35 

D. REUSABLE SOFTWARE COMPONENT SPECIFICATION................41 
1. Overview .............................................................................................41 
2. Software Component Specification ..................................................41 

E. SAFETY PROCESS AND HAZARD ANALYSIS .....................................46 
1. Overview .............................................................................................46 

F. METRICS.......................................................................................................51 



 viii

1. Overview .............................................................................................51 
2. Software Safety Metrics ....................................................................51 
3. Summary of Software Safety Metrics ..............................................62 

G. REGULATOR NEEDS .................................................................................64 
H.  SUMMARY ....................................................................................................64 

IV. APPLICATION OF THE FRAMEWORK.............................................................65 
A. APPLICATION OF THE FRAMEWORK.................................................65 

1. Example Process Applying the Framework ....................................65 
B. CONCLUSION ..............................................................................................68 

V. CONCLUSION ..........................................................................................................69 
A. KEY FINDINGS AND ACCOMPLISHMENTS........................................69 
B. FUTURE WORK...........................................................................................70 

APPENDIX: EXAMPLE SOFTWARE LEVELS OF RIGOR.........................................73 
A. EXAMPLE SOFTWARE LEVEL OF RIGOR (LOR) MATRIX AND 

REQUIRED LEVEL OF RIGOR SOFTWARE PRODUCTS .................73 
B. SOFTWARE RISK ASSESSMENT MATRIX AND SOFTWARE 

HAZARD RISK INDEX ...............................................................................75 

LIST OF REFERENCES......................................................................................................77 

INITIAL DISTRIBUTION LIST .........................................................................................81 

 
  



 ix

LIST OF FIGURES 

Figure 1. AS/NZS 4360:2004 Risk Management Process Overview ...............................8 
Figure 2. MIL-STD-882D System Safety Process............................................................9 
Figure 3. Framework for Software Reuse in Safety-Critical System of Systems ...........24 
Figure 4. Example Process Showing Application of the Framework .............................65 

 



 x

THIS PAGE INTENTIONALLY LEFT BLANK 



 xi

LIST OF TABLES 

Table 1. 178B Software Levels......................................................................................17 
Table 2. DO-178B Deliverables.....................................................................................18 
Table 3. Software Safety Metrics Ranking and Relevance............................................64 
Table 4. Example Software Level of Rigor Matrix .......................................................73 
Table 5. Example Required Level of Rigor Software Products.....................................74 
Table 6. Software Risk Assessment Matrix ...................................................................75 
Table 7. Software Hazard Risk Index ............................................................................75 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 xii

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 



 xiii

LIST OF EQUATIONS 

Equation 1:  Desired Value of SRUTC Over Time..............................................................54 
Equation 2.  Software Requirements Demonstration Metric ...............................................54 
Equation 3.   Percent Software Safety Requirements............................................................55 
Equation 4.   Percent Software Hazards ................................................................................56 
Equation 5.  Controls with Causes .......................................................................................56 
Equation 6.  Verifications with Controls..............................................................................57 
 



 xiv

THIS PAGE INTENTIONALLY LEFT BLANK 



 xv

ACKNOWLEDGMENTS 

I would like to express my appreciation to the Australian Army for providing me 

with the opportunity to pursue further professional development through a Master of 

Science in Software Engineering at the Naval Postgraduate School.   

 I would like to express my appreciation to my advisors, Professor Michael and 

Professor Shing, for inspiring my research in this area and for their guidance through my 

research. I would also like to thank them for their instruction in software engineering 

subject areas and for providing me with the foundations for my future software 

engineering career. I would also like to thank the other faculty members in the software 

engineering department for their support during my study. 

 I would like to thank my wife, Emily, for her dedicated support over the duration 

of my research and for her patience during the long nights and weeks of study and 

research. To her I owe an enormous debt and am eternally thankful that she was there for 

me over this time.  

 



 xvi

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 
 



 1

I. INTRODUCTION  

A. THE EVOLUTION OF SOFTWARE REUSE 

Software reuse evolved from rudimentary techniques, such as development of 

function calls in early programming languages (e.g., FORTRAN) and libraries of 

software routines for performing scientific calculations, to modern-day approaches to 

reuse that cover the entire software lifecycle and all software system artifacts.  For 

instance, there are now well established methods for reusing software architectures and 

design patterns.  The inclusion of high-level artifacts such as use cases and requirements 

has been in part due to the realization that decisions made early in the development 

process typically have a significant impact on software engineers’ ability to refine the 

these artifacts into a machine interpretable or executable system.  Software reuse relies on 

preplanning to enact a sustainable reuse program that meets the needs of the 

organizations involved in a system development project.  Preplanning distinguishes 

software reuse from software salvage, an unsystematic, opportunistic approach to using 

software system artifacts not developed with reuse in mind. 

Another driver for continued innovation in software reuse is what has been 

referred to as the “software crisis”1: the imbalance between the explosive growth in 

software demand and both lagging software development productivity and the shortage in 

the supply of software professionals. This “software crisis” is just as apropos today as it 

has been over the past forty years of software engineering. The success rate of delivering 

or maintaining information systems on schedule, at cost, and within performance 

constraints has not improved since the 1970s, as evidenced by the results of studies 

reported by the U.S. Government Accountability Office and the Standish Group.  When 

applied in an appropriate manner, software reuse provides a means for improving 

software quality, increasing development productivity, shortening time-to-market (i.e., 

creating competitive advantage), achieving consistent application functionality, reducing 

                                                 
1 NATO Software Engineering Conference, NATO Science Committee, Garmisch, Germany, 7-11 

October 1968.  
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risk of cost and schedule overruns, improving validation of user requirements through 

prototyping, leveraging of technical skills and knowledge, and avoiding the inclination to 

“reinvent the wheel” (e.g., a survey performed in 1983 found that 85% of software 

developed was not unique2). 

In 2003, U.S. Department of the Navy adopted an open architecture initiative3 to 

realize some of the aforementioned improvements in software development. The Navy’s 

open architecture is a multi-faceted strategy providing a framework for developing joint 

interoperable systems that adapt and exploit open-system design principles. This 

framework includes a set of principles, processes, and best practices that: provide more 

opportunities for competition and innovation; rapidly field affordable, interoperable 

systems; minimize total ownership cost; optimize total system performance; yield 

systems that are easily developed and upgradeable; and achieve component software 

reuse. Thus, there is a recognized need to achieve greater software component reuse, 

which will subsequently support the achievement of other outcomes of the Navy 

initiative.  There is also the need to avoid software duplication, save resources, and get 

more out of existing resources to keep Navy and the other U.S. services positioned as the 

best in the world at an acceptable cost.  

Without software reuse, it is unlikely that an organization will achieve a 

technological advantage or be at the cutting edge of technology development because it 

will simply take too long or be too costly to achieve that position via either green-fields 

development (i.e., starting from scratch) or software salvage.   

Although the rationale for software reuse is sound, there are significant challenges 

to applying reuse in the development of safety-critical applications in a system of 

systems. A system of systems is an amalgamation of legacy systems and developing 

systems that provide an enhanced capability greater than that of any of the individual 

                                                 
2 E.J. Joyce., Reusable Software: Passage to Productivity. Datamation, Volume 34, Number 18, 

Spetember 15, 1988, p. 98. 

3 Department of Defense Directive 5000.1, The Defense Acquisition System, 12 May 2003. 
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systems within the system of systems.4 System of systems are a great departure from 

standalone systems. There is uncertainty and risk associated with assumptions about the 

interfaces between the component systems and issues of system interoperability. Also 

certain rules and restrictions apply to the reuse of software in safety critical systems. 

Planning for reuse and determining the appropriateness of reuse in a safety-critical 

system of systems represent a significant challenge because of the large number of 

potential system configurations, their non-stationary position, the associated emergent 

hazards, and derived safety requirements. Furthermore, safety is a system property and 

thus reused software will impact on the system safety.  

There are also challenges associated with using non developmental items (NDIs) 

in a system of systems. The challenges arise because a single stakeholder does not control 

these individual systems and these systems may be used in plug-and-play arrangements, 

leading to multiple possible configurations, which will result in emergent safety 

properties and requirements.   

Overcoming the reusability challenges means that more software will be reused, 

software development productivity will increase and the quality of the software and 

system will improve. Even after applying these rules you do not necessarily have a safe 

design, because even the best design cannot fully isolate the safety critical functionality 

from the reused component or non-developmental item. This currently limits the extent 

that software can be reused in safety-critical systems, including that in a system of 

systems. A software component that possesses certain essential attributes that are 

explicitly revealed and is classified appropriately will be more readily available for use 

and reuse in a safety-critical system of systems. A framework describing these software 

component requirements will facilitate effective reuse in safety-critical system of 

systems, creating advantages for both the U.S. and Australian defense communities in 

developing safety-critical systems. Many military systems today are both safety critical 

and composed of legacy and new development systems, such as the U.S. Ballistic Missile 

Defense System.  

                                                 
4 D.S. Caffall., J.B. Michael., Architectural Framework for a System-of-Systems, in Proc of the IEEE 

International Conference on Systems, Man and Cybernetics, Volume 2,  10-12 Oct 2005, p1876. 
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B. CONCEPTS AND DEFINITIONS 

1. Software Reuse 

Software reuse is the use of existing software artifacts in the development of other 

software artifacts with the goal of improving productivity and quality, among other 

factors.5 Software reuse can also be described as the process of leveraging components 

from one system or environment for use in other systems or environments with no or 

minimal change to the component. Environment in this case refers to the context of use of 

the system, such as the classic example of reusing the guidance and control software from 

Arianne 4 in Arianne 5 or the case of software evolution, where the requirements and 

context of a system changes with changes in its mission. Software reuse differs from 

software salvage in that it occurs in a systematic way with a degree of preplanning for 

future use. Software reuse results from effective foresight during development, providing 

an investment in that future use. Conversely, software salvage is an unsystematic 

opportunistic approach to using software-system artifacts that were not developed with 

reuse in mind. Software artifacts are the products or byproducts of the software 

development process that comprise possible candidates for reuse. Lim identifies ten types 

of software artifacts that may be reused. They are: 

1. Architectures  6.  Estimates  
2. Source Code  7.  Human Interfaces 
3. Data   8.  Plans 
4. Designs  9. Requirements 
5. Documentation 10. Test Cases  
 
According to Lim, a software component is a set of software artifacts that 

comprise a coherent module. It may contain many of the artifacts described above.6 

There are, however, many different definitions for a software component. Braude defines 

a software component as a software collection used without alteration, under the goal of 

                                                 
5 W.C. Lim., Managing Software Reuse, A Comprehensive Guide to Strategically Reengineering the 

Organization for Reusable Components, Upper Saddle River, NJ.: Prentice Hall PTR, 1998, p7. 

6 W.C. Lim., Managing Software Reuse, A Comprehensive Guide to Strategically Reengineering the 
Organization for Reusable Components, Upper Saddle River, NJ.: Prentice Hall PTR, 1998, p539.  
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reuse and as the vehicle for delivering reuse.7 Alternatively, Larman states that a 

component represents a modular part of a system that encapsulates its contents and whose 

manifestation is replaceable within its environment.8  Pressman, on the other hand, 

defines a software component as a unit of composition with contractually specified and 

explicit context dependencies only.9 Although there may be many different definitions, 

there is much commonality among them. In this thesis we define a software component 

as a collection of software comprising a module with a well-defined purpose that may be 

used with no or minimal alteration.      

Lim identifies the many benefits of software reuse as: 

• Improved software quality 

• Increased development productivity 

• Shortened time to market 

• Consistent application functionality 

• Reduced risk of cost and schedule overruns 

• Allows prototyping for validating user requirements 

• Leveraging of technical skills and knowledge10  

Software reuse, once established, enables an organization to accomplish more 

without additional resources. This is important for both businesses trying to gain and 

maintain a competitive advantage and public sector entities attempting to acquire the best 

systems at the least cost. Software reuse allows an organization to generate competitive 

advantage and to avoid duplicating past efforts. Furthermore, it is one method for 

mitigating the software crisis. Software reuse is a means for an organization to leverage  

 

 

                                                 
7 E. Braude., Software Design: From Programming to Architecture, Hoboken, NJ.: John Wiley & 

Sons, 2004, p385.  

8 C.Larman., Applying UML and Patterns, An Introduction to Object-Oriented Analysis and Design 
and Iterative Development, Third Edition, Upper Saddle River, NJ.: Pearson Education, 2005, p654. 

9 R.S. Pressman., Software Engineering A Practitioner’s Approach, Sixth Edition, New York, NY.: 
McGraw-Hill, 2005, p817. 

10 W.C. Lim., Managing Software Reuse, A Comprehensive Guide to Strategically Reengineering the 
Organization for Reusable Components, Upper Saddle River, NJ.: Prentice Hall PTR, 1998, p102.  
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past successes through organizational learning and institutional memory. Software reuse 

represents a strategy for meeting the challenges of a rapidly changing complex 

environment.   

These benefits, however, may not be realized if reuse is not implemented 

effectively. For example, reusing a software component that subsequently does not meet 

the requirements, which may not be evident until verification and validation activities, 

may involve increased work and costs because new software may be developed later than 

originally intended. Without organizational support for reuse, including incentives for 

reuse, these benefits may be overlooked and go largely unrealizable. 

2. System Safety 

Safety is defined as freedom from those conditions that can cause death, injury, 

occupational illness, damage to or loss of equipment or property, or damage to the 

environment.11  

In other words, safety is freedom from conditions that cause accidents (mishaps). 

Furthermore, safety is the execution of a software product in a system without causing 

the system to exist in a hazardous state.12 

MIL-STD-882Ddefines system safety as:  

the application of engineering and management principles, criteria, and 
techniques to achieve acceptable mishap risk, within the constraints of 
operational effectiveness and suitability, time, and cost, throughout all 
phases of the system life cycle.13 

Furthermore, MIL-STD-882D defines system safety engineering as: 

An engineering discipline that employs specialized professional 
knowledge and skills in applying scientific and engineering principles, 

                                                 
11 Department of Defense, Standard Practice for System Safety, MIL-STD-882D, 10 February 2000. 

12 R. Singh., A Systematic Approach to Software Safety, in Proc of the sixth Asia Pacific Software 
Engineering Conference (APSEC ’99), 1999. 

13 Department of Defense, Standard Practice for System Safety, MIL-STD-882D, 10 February 2000. 
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criteria, and techniques to identify and eliminate hazards, in order to 
reduce the associated mishap risk.14 

In these cases MIL-STD-882D defines a hazard as: 

Any real or potential condition that can cause injury, illness, or death to 
personnel; damage to or loss of a system, equipment or property; or 
damage to the environment.15 

A hazard can also be defined as a source of potential harm16 or a prerequisite to a 

mishap or accident.  

The system safety process is a specific application of the risk management 

process to the system safety domain where instead of risk, the terms hazard and mishap 

risk are used. The objective of system safety is to achieve an acceptable mishap risk 

through a systematic approach of hazard analysis, risk assessment, and risk 

management.17 Figure 1 illustrates the risk management process as defined in the 

Australian and New Zealand standard AS 4360.18   

                                                 
14 Department of Defense, Standard Practice for System Safety, MIL-STD-882D, 10 February 2000. 

15 Department of Defense, Standard Practice for System Safety, MIL-STD-882D, 10 February 2000, 
p2. 

16 AS/NZS 4360:2004. Australian / New Zealand Standard. Risk Management, p3. 

17 Department of Defense, Standard Practice for System Safety, MIL-STD-882D, 10 February 2000, 
p3. 

18 AS/NZS 4360:2004. Australian / New Zealand Standard. Risk Management. 
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Figure 1.   AS/NZS 4360:2004 Risk Management Process Overview 

The system safety process as defined by MIL-STD-882D is as follows: 
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Figure 2.   MIL-STD-882D System Safety Process 

Both processes are similar, involving a number of common steps. Neither process 

has a way of guaranteeing that all relevant risks or hazards will be identified, which is 

why sub-processes are required to ensure that those relevant risks or hazards are 

identified so they can be treated.    

3. Software Safety 

The discipline of software safety engineering is the systematic approach to 

identifying, analyzing, and tracking software mitigation and control of hazards and 

hazardous functions (e.g., data and commands) to ensure safer software operation within 

a system.19 

                                                 
19 Overview of Software Safety, NASA Software Safety, May 2007, http://sw-

assurance.gsfc.nasa.gov/disciplines/safety/index.php. 
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Software system safety is a subset of system safety and, according to Leveson, 

“implies that the software will execute within a system context without contributing to 

hazards.”20 Software safety is a discipline within system safety engineering that focuses 

on the system’s software and its interactions with the hardware and human operators. 

Software itself cannot cause harm, except possibly emotional harm or stress (nerves) to 

those involved in its development; however, through its interactions with hardware it can 

cause hazards that may result in mishaps. Software safety is an engineering and 

management approach to ensuring that the software minimizes the system safety risk to 

an acceptable level while maintaining the effectiveness of the software and system. It is 

focused on meeting safety requirements. The purpose of system safety and software 

safety is to identify and mitigate hazards associated with the operation and maintenance 

of the system and software respectively and to define the residual risk, based on success 

of the controls implemented.21 

Software safety is concerned with both removing defects in software artifacts for 

which there would be hazardous consequences and ensuring the system’s specification 

adequately captures the safety requirements. Software safety is an ongoing process as the 

software and operational environment evolves.     

4.  Safety Critical Software 

Safety critical is a term applied to any condition, event, operation, process, or 

item whose proper recognition, control, performance, or tolerance is essential to safe 

system operation and support (e.g., safety critical function, safety critical path, or safety 

critical component).22 

                                                 
20 N. Leveson., Safeware: System Safety and Computers. Addison Wesley, Boston, 1995.  

21 V. Basili., K. Dangle., L. Esker., F. Marotta., Gaining Early Insight into Software Safety: Measures 
of Potential Problems and Risks, in Proc of the Systems & Software Technology Conference, June 2007, 
p3.  

22 Department of Defense, Standard Practice for System Safety, MIL-STD-882D, 10 February 2000. 
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According to NASA,23 software is safety critical if it meets at least one of the 

following criteria: 

1. Resides in a safety-critical system (as determined by a hazard 
analysis) and at least one of the following: 

a. Causes or contributes to a hazard 

b. Provides control or mitigation for hazards 

c. Controls safety-critical functions 

d. Processes safety-critical commands or data 

e. Detects and reports, or takes corrective action, if the system 
reaches a specific hazardous state 

f. Mitigates damage if a hazard occurs 

g. Resides on the same system (processor) as safety-critical 
software 

2. Processes data or analyzes trends that lead directly to safety 
decisions (e.g., determining when to turn power off to wind tunnel to 
prevent system destruction) 

3. Provides full or partial verification or validation of safety-critical 
systems, including hardware or software subsystems. 

A safety critical function is any function, whether hardware, software, operator, or 

combination thereof, that directly influences a hazard or hazardous situation. 

Furthermore, it is any function whose improper functioning could result in a hazard in 

which improper functioning includes failure modes, out of tolerance conditions, timing 

error or problems (e.g., data latency), or other errors.24 

                                                 
23 Overview of Software Safety, NASA Software Safety, May 2007, http://sw-

assurance.gsfc.nasa.gov/disciplines/safety/index.php. 

24 W.C. Lim., Managing Software Reuse, A Comprehensive Guide to Strategically Reengineering the 
Organization for Reusable Components, Upper Saddle River, NJ.: Prentice Hall PTR, 1998. 
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In the context of safety critical software, there is the rule that reused software or 

non-developmental items (NDI), be it COTS, GOTS, MOTS25 or legacy software, may 

not initiate, sustain, or prevent occurrence of a safety critical function unless the NDI has 

been evaluated to the same level as a developmental software component. This rule 

results from the reality that not enough information is typically provided on reusable 

software components and that there is not a standard or shared understanding to describe 

what that should be. Furthermore, safety is a system property, and thus reused software 

will impact system safety; it is dependent on the interfaces and interactions with the 

system. Thus, this suggests that there will always be a requirement for analysis of the 

component in its intended environment. This is likely to involve operational testing and is 

dependent on the safety requirements. 

5. Safety Critical Environment 

A safety critical environment is an environment in which there are potential 

hazards or hazardous situations or where proper system functioning is essential for safe 

operation. 

6. System of Systems 

A system of systems is an amalgamation of legacy systems and developing 

systems that provides an enhanced capability greater than that of any of the individual 

systems within the system of systems.26 It represents a natural evolution from systems 

and systems development to now integrating several systems to form a greater system for 

the accomplishment of specific objectives.   

System of systems represent a significant departure from standalone systems as 

their components are individual systems often with a high level of autonomy whereas 

system components, subsystems are often unable to operate in isolation from the other 

subsystems that compose the system. Furthermore, system of systems development is not 

                                                 
25 Commercial off the Shelf (COTS), Government off the Shelf (GOTS), and Modified off the Shelf 

(MOTS). 

26 D.S. Caffall., J.B. Michael., Architectural Framework for a System-of-Systems, in Proc of the IEEE 
International Conference on Systems, Man and Cybernetics, Volume 2,  10-12 Oct 2005, p1876. 
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just a larger version of systems development; it represents an area of greater uncertainty 

and risk associated with assumptions and unknowns of the interfaces between the 

component systems. The component systems are often developed to meet requirements 

and constraints that are different from those of the system of systems. It is often the case 

in system of systems development that legacy systems are integrated with new systems 

and thus not all system of systems components were designed to optimize the 

performance or dependability of the system of systems or to conform to required 

interface and interoperability specifications.  

Example system of systems are the U.S. Ballistic Missile Defense System 

(BMDS) and the U.S. Army’s Future Combat System (FCS). The U.S. Commercial and 

Military Aviation systems could be described as further system of systems examples.   

7. Safety-Critical System of Systems 

A safety-critical system of systems is a system of systems operating in an 

environment in which there are hazards or hazardous situations or where proper system 

functioning is essential for safe operation within a system of systems. The environment 

represents the context in which the system will be used and in the case of a system of 

systems, there may be many different contexts of use. These many contexts of use will 

have a significant affect on safety because safety is context dependent. Safety is a 

function of the context of use, against which hazards can be identified.   

Commercial and military aviation could be described as a safety-critical system of 

systems. In the case of commercial and military aviation, a number of different systems 

operate cohesively for a common purpose where safety is of paramount importance.     

8.  Framework for Software Reuse 

Successful software reuse requires a holistic, systematic, multi-disciplinary 

approach which is matched to the specific context of use. I intend to establish a 

framework within which software reuse can be enabled and supported and the probability 

of a successful outcome increased in a safety-critical system of systems context.  
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This framework requires the integration of a number of factors to be successful.  

Much of the success of any reuse program can be attributed to the amount of 

information available on a potential reuse candidate, the ability to search and locate that 

information, and supportive organizational policies which encourage reuse. To a lesser  

degree, success can also be attributed to institutionalized memory based on past 

experiences employing software reuse that will contribute to future organizational 

policies on software reuse.   

This framework will establish the organizational policy and culture requirements, 

the information required on a reusable software component and its possible organization, 

metrics that are of interest, requirements from a regulator or certification authority’s 

perspective, and the hazard analysis that must occur to make software reuse a success in 

safety-critical system of systems. 

This thesis will focus on compositional reuse rather than generative reuse, as 

described by Lim.27 Generative reuse software is a tool for producing software artifacts 

that may be compositionally reused; however, the framework may provide value in that 

area too.   

Chapter II will provide an overview of standard DO-178B, Software 

Considerations in Airborne Systems and Equipment Certification, which will provide the 

context for discussion of an Advisory Circular on Reusable Software Components 

(AC20-148) issued by the Federal Aviation Administration (FAA). The Advisory 

Circular on Reusable Software Components provides an example of how reuse is 

encouraged and a process established to make it more prevalent and ubiquitous in the 

U.S. aviation community.  

Chapter III introduces the framework for software reuse in safety-critical system 

of systems, the metrics relevant to safety, reuse metrics, regulator needs, and their 

influence on elements of the framework. Chapter IV provides an example of how to 

apply the framework, and Chapter V draws some conclusions and discusses future work.    

                                                 
27 W.C. Lim., Managing Software Reuse, A Comprehensive Guide to Strategically Reengineering the 

Organization for Reusable Components, Upper Saddle River, NJ.: Prentice Hall PTR, 1998, p397. 
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II. THE FEDERAL AVIATION ADMINISTRATION APPROACH 
TO SOFTWARE REUSE 

A. DO-178B SOFTWARE CONSIDERATIONS IN AIRBORNE SYSTEMS 
AND EQUIPMENT CERTIFICATION 

1. Overview 

RTCA/DO-178B28 Software Considerations in Airborne Systems and Equipment 

Certification is a contemporary software assurance standard that is highly regarded within 

the aviation community. It is the preferred standard for software assurance for safety 

related airborne software in the Australian Defence Force (ADF) and the U.S. Federal 

Aviation Administration (FAA) and is used by many others developing or regulating 

airborne software. DO-178B provides guidelines on software production for airborne 

systems and equipment. The standard could be applied across application domains but 

some aspects are avionics specific.  

DO-178B applies to the assurance and certification of all software requirements 

and not just those that are safety related. In DO-178B, two main entities are described, 

those being the Certification Authority and the Applicant. The Certification Authority is 

the organization or person granting approval on behalf of the country responsible for 

aircraft or engine certification29 and is the organization that defines certification 

requirements, conducts reviews of compliance with safety requirements, and certifies 

compliance with the requirements. The Applicant is the person or organization seeking 

approval from the Certification Authority and therefore is the party responsible for 

providing the argument and evidence for certification. The FAA uses DO-178B when 

certifying airborne software, and it is thus the standard that developers, integrators, and 

users of airborne software must comply with to achieve certification from the FAA. DO-

178B is also the preferred standard of the ADF for assurance of airborne software.    

                                                 
28 Radio Technical Commission for Aeronautics, DO-178B / ED-12B, Software Considerations in 

Airborne Systems and Equipment Certification, Washington D.C., 1 December 1992. 

29 Ibid., p. 12.  
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B. FAA AC20-148 REUSABLE SOFTWARE COMPONENTS (RSC) 

1. Overview 

According to Wlad, no formal guidance or standard exists that maximizes the 

utility of software reuse in any industry.30 For the development of software for use in 

safety-critical system of systems, a the Federal Aviation Administration (FAA) issued a 

relatively new policy to provide some guidance on the certification requirements when an 

already certified software component is to be reused, but this does not focus on the design 

for reuse or those inherent attributes that the software component must exhibit to 

facilitate effective reuse. Wlad asserts that this new policy will cause a major shift in how 

software is reused in safety critical systems. The new policy is a Reusable Software 

Components Advisory Circular (AC20-148) published in 2004. This circular details the 

approach and documentation necessary for systematic reuse of software components that 

meet the guidelines of DO-178B. AC20-148 now allows for acceptance of software 

independent of a hardware platform, enabling developers to take certification credit on 

one project and apply it to future projects.  

The FAA asserts that this approach is one acceptable means of compliance but not 

the only one to gain acceptance or credit for the reuse of a software component. As this is 

an advisory circular, it is not mandatory nor does it constitute a regulation. This AC only 

applies when all stakeholders agree that the software component is reusable because 

meeting the policy requirements is likely to require additional effort and resources. The 

AC may apply to verification and development tools, although the FAA plans to cover 

this specifically in future guidance. The motivation for this guidance comes from the 

economic incentives of reuse, encouraging software developers to develop reusable 

software components (RSCs) that can be integrated into many systems. DO-178B based 

verification of systems is known to be an expensive endeavor. Providing a mechanism for 

taking credit on one project and using it on another via use of an RSC reduces both 

                                                 
30 J. Wlad., Software Reuse in Safety critical Airborne Systems, in Proc of 25th Digital Avionics 

Systems Conference, Oct 15, 2006, p. 6C5-1. 
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certification cost, time, and risk. The guidance in the AC ensures that systems using 

RSCs meet all applicable RTCA/DO-178B objectives.    

The FAA may grant acceptance of an RSC provided all stakeholders comply with 

the advisory circular and that no installation, safety, operational, functional, or 

performance concerns are identified. Essentially this AC increases the certification 

requirements and documentation for the component in the first instance, making it easier 

for subsequent uses of the software component. The AC makes a good point in that 

acceptance of the RSC for one project does not guarantee acceptance on a later project as 

applicants must consider installation, safety, operational, functional, and performance 

issues for each project. This is important because safety is a system property. Just 

because there are no safety issues in one environment does not preclude them from 

existing in the new environment, which is particularly important in a system of systems. 

In other words, the RSC is not to be reused blindly and should be assessed for each 

project or environment. The approach identified in the AC requires a close working 

relationship between the FAA, the developer, and other stakeholders in addition to the 

provision of evidence to support the argument that the RSC satisfies all DO-178B 

objectives throughout the development of the system. Table 1 shows the failure 

conditions of the safety requirements that have been allocated to software as the source 

and the number of objectives that require evidence. For example, a software failure 

condition that is catastrophic receives a level of A and requires evidence to support 66 

objectives.     

Failure 
Condition 

Software 
Level 

Number of 
Objectives 

Catastrophic Level A 66 

Hazardous / 
Severe - Major Level B 65 

Major Level C 57 

Minor Level D 28 

Table 1.   178B Software Levels 
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The advisory circular recognizes that on a project the developer, integrator, and 

applicant for an RSC may be different, and even when an applicant plays all three roles, 

there needs to be a process for communicating and transferring accepted data among the 

relevant stakeholders. The advisory circular addresses that communication and transfer of 

data and identifies what information each party to the RSC must produce. The advisory 

circular recognizes the need for a greater level of DO-178B compliance and evidence 

thereof through documentation when applying for acceptance of an RSC. The advisory 

circular is also more specific than DO-178B as to what the DO-178B deliverables should 

contain to comply with the advisory circular. Table 2 lists the DO-178B deliverables 

required for certification.  

 

Plan for Software Aspects of Certification  

Software Development Plan  

Software Verification Plan  

Software Configuration Management Plan  

Software Quality Assurance Plan  

Software Standards (Reqs/Design/Code)  

Software Requirements  

Design description  

Source code  

Review results  

Test procedures/Test results  

 Software Life Cycle Environment Index  

Software Configuration Index  

Problem reports  

Software Configuration Management records  

Software Quality Assurance records  

Software Accomplishment Summary  

Table 2.   DO-178B Deliverables 
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The advisory circular also describes the data requirements that the developer must 

provide to the integrator or applicant. As an example, data requirements include failure 

conditions, safety features, protection mechanisms, architecture, limitations, software 

levels, interface specifications, and intended use of the RSC. Furthermore, open problem 

reports on the RSC and analysis of any potential functional, operational, performance, 

and safety effects must be provided; this is particularly important in assessing the 

appropriateness for a particular context of use and in transferring safety information. 

Another positive approach taken in the advisory circular is that regardless of any legal 

and proprietary issues and agreements about the delivery of software life cycle data (or 

artifacts) between the applicant and the developer, the data must be available for the 

certification authority or authorized designee’s review and inspection. This places the 

interest of public safety above all other concerns. This means that complete information 

is disclosed to the certification authority even if the applicant or integrator does not have 

access to it, overcoming the potential adverse impact proprietary protection may place on 

safety.  

The FAA also requires that the developer submit a data sheet for the RSC which 

must concisely summarize: 

• RSC functions  

• Limitations  

• Analysis of potential interface safety concerns   

• Assumptions   

• Configuration   

• Supporting data 

• Open problem reports  

• Software characteristics  

• Other relevant information that supports the integrator’s or applicant’s use 

of the RSC 



 20

This data sheet also assists in increasing the understandability of the software 

component, characterizing what information is deemed important. There are also 

provisions and requirements placed on the developer for identifying and maintaining data 

to support changes to the RSC. 

Military aviation regulators could take advantage of the approach described in the 

advisory circular when full information disclosure may not be achievable or required with 

all stakeholders but that information is made available to the regulator. Taking the 

approach identified in the AC may reduce some of the verification activities required on 

subsequent projects and reduce the requirement to redo DO-178B certification activities. 

The advisory circular also identifies potential software reuse issues and provides a 

process for recertification when changes are made to an RSC.  

Overall the advisory circular provides thorough and systematic guidance for the 

acceptance and credit for reuse of a reusable software component. The advisory circular 

specifies the process, the information needs of all parties, some potential reuse problems, 

and how to gain recertification of an RSC after changes to it are made. The advisory 

circular recommends the use of DO-178B as the relevant standard for initial and future 

compliance; however, this is not mandatory but it would be more difficult if another 

standard was used. It recognizes the importance of a design for reuse approach and the 

allocation of appropriate resources to gain credit for the early work when reused. Just like 

safety and other issues, consideration of reuse issues as early as possible in the system 

development is much more efficient in assuring effective reuse than delaying 

consideration until after many of the design and development decisions have been made.  

A deficiency of the advisory circular is that it does not specifically refer to the use 

of hazard analysis, which is a cornerstone of safety engineering, nor what the information 

requirements for providing evidence to support a safety case in the new context of use. A 

safety case sets out the safety justification for the system and contains a record of all the 

safety activities associated with a system throughout its life.31 The advisory circular does  

 

                                                 
31 N. Storey., Safety-Critical Computer Systems, New York, NY.: Addison-Wesley, 1996, p364. 
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recommend that safety must be considered and addressed, which may be the authors’ way 

of providing the evidence in support of the safety case for the component; however, this 

was not explicit.  

As this advisory circular is not mandatory and represents guidance only, but refers 

to DO-178B as the certification basis, it must be recognized that this approach will be 

seen as the preferred and most common way. The advisory circular does not preclude the 

use of other ways of achieving RSC certification; however, it makes compliance with 

other standards more arduous by specifically referring to DO-178B, thereby perpetuating 

and encouraging its use. Thus this advisory circular becomes a de facto standard for 

reusable software component certification within U.S. civil aviation.  The advisory 

circular is the FAA’s recognition that reusable software components are important and a 

process to achieve certification and attain credit for subsequent uses is beneficial.  
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III. FRAMEWORK FOR SOFTWARE REUSE IN SAFETY-
CRITICAL SYSTEM OF SYSTEMS 

A. OVERVIEW 

According to Lim, software reuse is most effective when practiced 

systematically.32 In order to achieve a systematic approach that is also holistic and 

multidisciplinary, a framework for software reuse in safety-critical system of systems is 

required for identifying the key aspects, factors, and influencers on software reuse and for 

generating discussion on them. It is therefore proposed that the successful application of 

software reuse in a systematic approach depends on the following four factors (or pillars): 

1. Organizational Factors (Enabler or Foundation). 

2. Reusable software component attributes (Quality). 

3. Reusable software component specification (Knowledge Capture and Search 

Effectiveness). 

4. Safety Analysis (Environmental Match).  

This chapter will explore these four factors of software reuse in detail.  

The particular context of safety-critical system of systems places greater 

emphasis, in particular, on factors 2 and 4 of the framework. What differentiates this 

framework from a framework for reuse in general is the level of detail in each element 

and that a safety or hazard analysis and in particular a system-of-systems hazard analysis 

is essential.  

The framework depicted in figure 3 shows how the factors (or pillars) contribute 

to achieving effective software reuse in safety-critical system of systems. In this case, the 

framework refers to the supporting structure for software reuse. It is process neutral and 

represents the desired elements for successful software reuse.  

                                                 
32 W.C. Lim., Managing Software Reuse, A Comprehensive Guide to Strategically Reengineering the 

Organization for Reusable Components, Upper Saddle River, NJ.: Prentice Hall PTR, 1998, p. 10. 
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Figure 3.   Framework for Software Reuse in Safety-Critical System of Systems  

This framework focuses on compositional reuse, the construction of new software 

products by assembling existing reusable artifacts, rather than generative reuse. The 

framework, however, may provide value for the latter.  

The needs and policies of the regulator will have an impact on any reuse program 

and will largely dictate the activities required and documentation necessary to obtain the 

benefits of software reuse. Example regulators include the FAA for civilian aviation in 

Safety-Critical 
System of Systems 
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the United States, the Naval Air Systems Command for U.S. Navy (USN) and U.S. 

Marine Corps (USMC) aviation, and the Australian Defence Force (ADF) for military 

aviation in Australia. The specific regulator for the safety-critical system of systems will 

have influence on the framework as evident in the discussion of the FAA’s influence on 

software reuse through its guidance (Advisory Circular 20-148).  

B. ORGANIZATIONAL FACTORS 

Organizational factors represent the enabling and supporting functions within an 

organization that must exist to achieve successful software reuse in any context. These 

non-technical, management factors have significant influence on any software reuse 

activity and if not aligned appropriately, can dramatically affect the success of any 

proposed software reuse. Effective software reuse requires a strong commitment from 

senior management, a documented process that supports the organization’s mission, a 

software reuse policy, and a delegated software reuse team. The significant factors 

affecting software reuse from an organizational perspective fall into the following 

categories: culture; people; structure; reuse domain; reuse potential; reuse capability; 

policies, processes and practices; and reuse metrics.  

1. Culture   

Organizational culture is defined as "consciously held notions shared by members 

that most directly influence their attitudes and behaviors.”33 These notions may include 

behavioral norms, values, beliefs, rituals, symbols, and behaviors that employees believe 

are expected of them to fit in and survive in an organization. Organizational culture can 

also be thought of as the leadership and management style, employee involvement and 

participation, and the customs and norms of an organization. These have a significant 

affect on the performance of an organization, which subsequently affects software reuse 

efforts. If those closely held notions within an organization are not conducive to software 

reuse, then it will be difficult for the organization to effectively reuse software. If the 

                                                 
33 R.H. Kilmann., M.J. Saxton., R. Serpa., Gaining Control of the Corporate Culture, Jossey Bass 

Business and management Series, San Francisco, CA.: 1985. 
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leadership and management style promotes reuse, this can aid in the successful 

implementation of a reuse program. A supportive organizational culture cannot guarantee 

the success of software reuse.. The lack of a supportive organizational culture, however, 

will almost certainly guarantee failure. The leadership and management of an 

organization have a significant influence in this regard, and they must both buy into 

software reuse and promote its benefits throughout the organization.  

It is not easy to change an organizational culture, because this requires changing 

the ingrained ways of that which defines the organization, but change is necessary if 

software reuse is to be successful and implemented where required. Members of the 

organization with a stake in software development must buy in to the concept of software 

reuse and understand its purpose for it to be a success across the organization. For 

software reuse to be implemented successfully, it is essential that there be a culture of 

cooperation and collaboration between stakeholders of the system of systems to ensure all 

relevant issues are considered in a timely and effective manner.  In the context of safety-

critical system of systems what is desired is a safety culture that permeates all 

organizations that contribute to the system of systems. This reflects the ideal and may not 

be achievable in reality. A safety and reuse champion is required who will educate, 

influence, and align the other stakeholders to achieve the necessary organizational 

culture.          

2. People  

People are a key component in the implementation of software reuse in an 

organization. They must be motivated to reuse with the requisite support to enable them 

to do so. People must understand the purpose for reusing software and the way it is to 

occur. Incentives to encourage reuse must be used to affect attitudinal changes towards its 

practice. Without any one of these, the best efforts may come undone.  
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Furthermore, the right people need to be placed in the right positions to have a 

positive impact on the software reuse efforts of an organization. Possible positions could 

include:34 

a. Reuse Champion, 

b. Domain Analyst, 

c. Domain Expert, 

d. Domain Workproduct Manager, 

e. Reuse Engineer, 

f. Reuse Analyst, 

g. Reuse Economist/Metrician, 

h. Librarian, and 

i. Reuse Manager. 

If software reuse is to be successful, all the preceding roles should be played in 

large and in small organizations; however, you could have different numbers of people 

responsible for each position. For example, you may have one person for each position; 

one person fulfilling more than one position; or the responsibilities of each position being 

fulfilled by a team of people. It is essential for an effective reuse program to select the 

right staff for each position and educate, train, and motivate them.  

A change in attitude and culture is important for long-term reuse success. The 

means for achieving a change in attitude and culture include education and training along 

with communication of the purpose of the reuse initiative. It is often the lack of 

communicating the goals of the reuse initiative that lets down the initiative and prevents 

it from being successful. Good management of the people filling the position cannot be  

 

 

                                                 
34 W.C. Lim., Managing Software Reuse, A Comprehensive Guide to Strategically Reengineering the 

Organization for Reusable Components, Upper Saddle River, NJ.: Prentice Hall PTR, 1998, pp225-227. 
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overstated in order to achieve success in software reuse.  All the people responsible for 

software development and maintenance have a role in successfully implementing 

software reuse.  

3. Structure 

The typical organizational structures, such as functional, project, matrix, and 

combinations thereof, may be used for reuse. Each structure has its advantages and 

disadvantages; these are dependent on the context for reuse. The best structure to apply 

will depend on the characteristics of the organization, the reuse strategy, and the 

environment that it will occur in. It is important to choose the right organizational 

structure that will deliver the reuse strategy given the organizational characteristics and 

operating environment. In safety-critical system of systems in which component quality 

and adherence to safety requirements is critical for software reuse, the best organizational 

structure may be a functional organization, where there is consistency in personnel, 

greater retention of corporate knowledge (or institutional memory), and the ability to 

centralize reuse efforts and efficiently manage them. Furthermore, under a functional 

organization it is more likely that common standards and methods will be reinforced and 

applied to the particular reusable artifacts in each functional area. However, just as there 

is the potential for greater quality and consistency among particular reusable artifacts, the 

functional structure may not be as responsive to customer needs as the other 

organizational structures and suffer from coordination problems between the functional 

departments of the reusable artifacts thus creating issues when components are to be 

reused. An organization does not necessarily structure itself based on what is best for 

reuse, so that structure may not be suitable in all cases.  In structuring an organization for 

reuse, it is also important to ensure that there are reuse departments responsible for the 

management of the reusable artifacts. These departments will maintain software 

repositories. An ecosystem supporting reused software in an organization is important.35 

 

                                                 
35 R. Anthony., Software Firms Reap Benefits of Code Reuse. The Wall Street Journal, December 3, 

2007. www.livemint.com, http://www.livemint.com/2007/12/03233411/Software-firms-reap-benefits-
o.html  
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4. Reuse Domain                                                

The market segment the organization is serving, the types of products the 

organization produces, or the public sector the organization is in often define the reuse 

domain. This influences what form software reuse should take and how it is performed. 

Competition and regulation within the domain of reuse will shape software reuse, define 

what is involved, motivate its use, and impact on its ultimate success. A stable operating 

domain for the organization will assist in making reuse decisions and in exploiting reuse 

to its full potential. A domain characterized by frequent disruptive technologies may 

provide little impetus for establishing or investing in a software reuse program.     

5. Reuse Potential 

Lim refers to a reuse potential and aptitude model36 to help firms identify their 

potential for reuse success. This model is based on the assumption that the organization 

must possess the requisite potential for reuse as well as the ability to successfully exploit 

that potential. Reuse potential represents the latent redundancies and opportunities within 

and across domains which, when combined with proper organizational ability, can 

become actual reuse.37  

Latent competencies or opportunities must exist for the organization in order to 

have reuse potential. A number of organizational characteristics influence reuse potential 

and provide the supporting basis for future reuse.      

6. Reuse Capability 

In order to recognize reuse potential, an organization must possess the capability 

to exploit the potential. Reuse aptitude (capability) refers to the requisite ability or 

capacity to exploit the reuse potential.38 This aptitude, capacity, or capability refers to the 

ability to turn potential into reality and consists of the organizational characteristics, 

                                                 
36 W.C. Lim., Managing Software Reuse, A Comprehensive Guide to Strategically Reengineering the 

Organization for Reusable Components, Upper Saddle River, NJ.: Prentice Hall PTR, 1998, pp 75. 

37 Ibid., p. 75. 

38 Ibid., p. 78. 
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competencies, resources, or access to resources in order to implement software reuse. 

Software reuse involves an investment and effort upfront, which can be up to forty 

percent more than software written without reuse in mind (not to mention the costs of 

establishing a reuse program initially).39 Moreover, an organization requires those 

additional resources at the right time in order to implement reuse. If an organization does 

not have the resources or access to resources when required, it will not be able to 

successfully implement a reuse program and fulfill its reuse potential. The specific reuse 

capabilities required are referred to throughout this chapter.   

7. Policies, Processes and Practices  

The members of an organization must understand the purpose of software reuse 

and develop policies, processes, and practices that are supportive of reuse. The policies, 

processes, and practices must be supportive of software reuse for it to be a success. These 

policies and processes must be clearly defined and consistent with organizational culture 

and provide clear guidance on how it will be implemented and who is responsible, in 

much the same way as AC20-148 does. The policies, processes, and practices must 

incentivize software reuse, rewarding the practice and cementing it into the 

organizational culture. It is the policies, processes, and practices that will form an 

organization’s culture over time, and to succeed reuse must become part of that culture. A 

reusability culture will be created over time through organizational policies, processes, 

and practices. Meyer defines reusability culture as one in which all software is developed 

under the assumption that it will be reused.40 He also says that the reusability of any 

software should not be trusted until it has been reused. This essentially supports the 

treatment of reusability concerns throughout development and that just because software 

has been designed that way does not mean that it is reusable in another context without 

                                                 
39 R. Anthony., Software Firms Reap Benefits Of Code Reuse. The Wall Street Journal, December 3, 

2007.  www.livemint.com, http://www.livemint.com/2007/12/03233411/Software-firms-reap-benefits-
o.html 

40 M. Meyer., Object-Oriented Software Construction, Second Edition, Upper Saddle River, NJ.: 
Prentice Hall PTR, 1997, p. 929. 
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sufficient evidence. This philosophy was also evident in the FAA AC20-148 Reusable 

Software Components guidance and by this framework.  

Reuse involves taking advantage of previous successes and in order to continue, 

policies must support it and not overly reward the use of newly created software. If 

people are paid more to create their own software rather than reuse existing software and 

past successes, the outcome will be predictable. This suggests that an organization should 

have policies and processes that enable a learning organization and have supportive 

metrics and compensation policies for reuse. The organization with a reuse strategy and 

goal must utilize metrics that assess the progress towards that goal. These metrics, based 

on data and information gained from the reuse of software and on the impact of software 

reuse, should inform policy decisions, therefore providing feedback and an improvement 

mechanism for the organization. Aligning compensation to reuse or creating a learning 

organization, one that learns from its successes, means that delivering repeatable results 

are viewed more highly than one off results. Repeatable results built on the foundations 

laid by others should be viewed as more valuable than any single results alone.  

These reuse processes and practices must be integrated into the existing software 

development process. For software reuse to permeate the system of systems, partnerships 

between stakeholders that will be promoted in policy and fostered by people are essential. 

These partnerships will be both intra- and inter-organization for software reuse to be a 

success. An example policy that will create and foster partnerships is a communication 

plan between the member organizations of the system of systems which will define the 

different types of communication, what they will be used to convey, and who is 

responsible for each. 

Other interesting business practices where reuse is encouraged include software 

development companies offering discounts for the retention of intellectual property (IP) 

rights for the software developed for clients so that they can reuse it on their future 

projects without requiring completely new developments or violating IP rights. This 

encourages the company to reuse and to capture some of the original development cost of 

the software on future projects. It encourages software developers to design for reuse and 

to consider other potential users of the same software.  
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On the other hand, reuse is enabled through transparency and the delivery of 

required IP rights to the customer. An example of this is the U.S. Navy’s open 

architecture (OA) strategy,41 a multi-faceted strategy providing a framework for 

developing joint interoperable systems that adapt and exploit open-system design 

principles and architectures. This framework includes a set of principles, processes, and 

best practices that, among other things, achieves component software reuse. By requiring 

open architectures and hence transparency of components, they are more readily reused 

by the Department of Defense (DoD) and those who the DoD wishes to contract with. 

However, in order to achieve this, the USN will likely have to pay a premium for that 

transparency and quality of the software upfront and hence commit to reuse to avoid 

excessive costs overall on its programs. The Navy requires that on each project it obtains 

and retains flexible IP rights and the IP rights it agrees to be based on the rights being 

offered, the rights the Government wants or needs, and the potential reuse for that 

software. The IP rights obtained and retained should be dependent on where the reuse is 

to occur and who is likely to reuse the software. Open IP rights facilitates reuse as 

interfaces can easily be determined; however, IP rights can be limited but promote reuse 

as long as interfaces are known and the organization responsible for the component 

development is involved in the reuse effort.   

The level of IP rights obtained and policy adopted in the acquisition of software 

will depend on the type of acquisition.  In between these two approaches may lie a way to 

achieve a sufficiently open architecture while minimizing costs and allowing the software 

developer to keep the IP for subsequent reuse both within DoD and externally. It may be 

the case that subsequent reuse by a DoD software supplier is subject to government 

approval. Another approach maybe that the government could initially own the IP but if a 

reuse opportunity is available, the company applies to the government for approval with 

some potential royalties and discounts on maintenance (evolution) as a result being 

passed back to the government. What is required is a way to effectively control the 

software, encourage reuse, and minimize overall cost so that access is available to the 

right information when it is required.    

                                                 
41 Naval Open Architecture, October 2007, https://acc.dau.mil/oa. 



 33

The FAA’s Reusable Software Components advisory circular AC20-148 provides 

a process for the regulator to review all relevant information for safety, regardless of 

whether the customer has all the information.42  Maybe the DoD airworthiness regulators 

could implement a similar approach where they have access to all IP but the respective 

user does not necessarily, thus removing the requirement for the user to pay for it in order 

to ensure that it can be reused safely. This may, however, create a conflict of interest as 

the airworthiness regulator is often not independent from the end user of the software 

component.  

Software for safety-critical system of systems should be developed with an 

assumption that it will be reused; however, it will not be blindly reused without 

considering its new context and performing a sufficient safety analysis. Policies and 

processes must be established that encourage and support reuse so that it is performed 

safely. Certain policies and approaches may be taken depending on who is reusing the 

software and for what purpose.  

A DoD policy for software reuse in safety-critical system of systems is required 

similar to the FAA AC20-148 that encourages reuse in the right circumstances and 

provides guidance on how it is to be performed, leveraging previous successful software 

in new systems development. The elements of that policy should come from this 

framework providing guidance on how software reuse will occur and how credit can be 

gained to make future software and system development more effective and efficient.   

8. Reuse Metrics 

Frakes and Terry established many useful reuse metrics in 1996,43 and only minor 

refinements have been made since then. The categorization of reuse metrics and models 

included cost-benefit analysis, maturity assessment, amount of reuse, failure mode 

                                                 
42 Advisory Circular AC 20-148, Reusable Software Components, US Department of Transportation, 

Federal Aviation Administration, December 7, 2004. 

43 W. Frakes., C. Terry., Software Reuse: Metrics and Models. ACM Computing Surveys, 28(2), June 
1996, p. 415-435. 
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analysis, reuse assessment and reuse library metrics. Lim44 developed a framework for 

reuse metrics based on the same Goal-Question-Metric paradigm described earlier to 

divide reuse metrics into the following six types: Economic Metrics, Primary Metrics, 

Library Metrics, Process Metrics, Product Metrics, and Asset Metrics. The exact choice 

of metrics from those listed above will be based on the organization’s particular situation 

and the questions it requires answers to, and their priorities. Ideally for reuse to be 

successful, it must be economical and lend itself to cost-benefit analysis and all other 

metrics will be subordinate. 

9. Conclusion      

  Organizational factors affect the success of any reuse effort. Without 

organizational factors that support reuse and their integration into the software 

development process, the result of any reuse initiative is likely to fail. For reuse to be 

successful, and in particular in safety-critical system of systems, these organizational 

factors need to be aligned such that they support systematic and careful reuse. Focusing 

on the technical aspects of reuse and failing to address the non-technical or organizational 

aspects will condemn any large scale systematic reuse effort to failure. Policies should 

cover the conduct of software reuse and maximize the utility of software reuse in a 

systematic way.   

C. REUSABLE SOFTWARE COMPONENT ATTRIBUTES 

1. Overview 

In consideration of those attributes the reusable software should possess, the 

software component is used, as it represents a common focus of reuse and a sufficiently 

sized entity to leverage the benefits of reuse.    

                                                 
44 W.C. Lim., Managing Software Reuse, A Comprehensive Guide to Strategically Reengineering the 

Organization for Reusable Components, Upper Saddle River, NJ.: Prentice Hall PTR, 1998, p. 301. 
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2. Definition of Software Component 

A software component is a collection of software comprising a module with a 

well defined purpose that may be used with no or minimal alteration. A component is 

thus a bounded element in a design and can be a single unit within that design. A 

component includes both tangible (code, design, test plans, and documentation) and 

intangible (e.g. knowledge and methodologies) elements. Ideally, a software component 

represents a reusable piece of software that can be easily integrated with other 

components with relatively little effort. The key is to achieve that ideal level. 

3. Component Attributes 

The software component attributes described in this section represent the ideals or 

goals as it may not be possible to achieve all in the one component. The following 

component attributes may not be achievable to the desired level and the exact levels will 

depend on the results of trade studies. It is important that these attributes be identified 

early so that they can be included in the trade studies and given due consideration. 

Consideration of those desired attributes and incorporation of them into the development 

process represents a design-for-reuse approach. As mentioned earlier there are no 

standards for development of safety-critical software that maximizes the utility of 

software reuse.45 This is also true in the safety-critical system of systems context. There 

is, however, some guidance on the certification requirements when an already certified 

software component is to be reused,46 but this does not focus on the design for reuse or 

those inherent attributes that the software component must exhibit in order to support 

effective reuse.  Thus, the focus here is on the attributes of reusable software components 

for use in safety-critical system of systems. That is, what attributes should be present to 

make component reuse easier or increase reusability of software in safety-critical system  

 

                                                 
45 J. Wlad., Software Reuse in Safety critical Airborne Systems, in Proc of 25th Digital Avionics 

Systems Conference, Oct 15, 2006, p. 6C5-1. 

46 Advisory Circular AC 20-148, Reusable Software Components, US Department of Transportation, 
Federal Aviation Administration, December 7, 2004. 
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of systems. It is important that components be designed for reuse, in that they exhibit 

these attributes as they will become members of the repository of reusable software 

components.   

Reusable software components for use in safety-critical system of systems should 

have the following attributes: 

• They should be transparent to the user or reuser, exhibiting an open 

architecture by default, including the essential documentation requirements of that 

component (see §3D for details on how that transparency should be defined).  

• The component should do one thing and do it well and have minimal 

interactions with other components. That is, the component should be highly cohesive 

with low coupling. Modular design should be adopted where functionality is partitioned 

into discrete, cohesive, and self-contained elements with well defined interfaces. This 

may be difficult to achieve in large component compositional reuse; however, this is a 

goal and modularity in design should be adhered to within the design of components.     

• The software component shall consist of well formed modules, be 

protected, include the localization of data, and comply with the criteria and principles for 

modularity. Meyer’s criteria for modularity—decomposability, composability, 

understandability, continuity and protection—and his five principles—direct mapping 

(Linguistic Modular Units), few interfaces, small interfaces (weak coupling and limited 

information exchange), explicit interfaces, and information hiding (providing uniform 

access)—should be followed in the design of reusable software components.47  

Decomposability is satisfied if it is possible to decompose the software into a 

smaller number of less complex problems. This is synonymous with the “divide-and-

conquer” approach to problem solving and the fact that it is often easier to construct a 

complex solution from the composition of a number of less complex solutions. The less 

complex problems should be connected via a simple structure with independence to 

facilitate further work proceeding separately on each one. If a component is 

                                                 
47 M. Meyer., Object-Oriented Software Construction, Second Edition, Upper Saddle River, NJ.: 

Prentice Hall PTR, 1997, § 3.1,3.2. 
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decomposable it will be easier to evolve because changes can be focused on the 

respective module. Composability means that it is possible to remove the software 

element from the environment of its original design and use it in another environment. 

Understandability means that the software must contain sufficient information so that it 

can be understood. This is also relevant for the evolution process, as in order to adapt and 

modify the software component it is essential that it be understandable. This is the key to 

component specification, which will be discussed in the next section. Continuity means 

that a requirements or specification change will only result in change of just one module 

or a small number of modules. Protection means that potential abnormal condition will 

be contained within a module or, at worst, will only propagate to a few neighboring 

modules.  

Direct Mapping (Linguistic Modular Units) means that there should be structural 

correspondence (direct mapping) between the solution domain and the problem domain, 

as described by the model. In other words, a module should ideally perform a function or 

implement a feature from the problem domain description. The reusable software 

component should have as few interfaces and inter-communication as possible. The more 

relations and interfaces between modules, the more likely it is for the effect of a change 

or error to propagate to other modules. Those interfaces that do exist should be small and 

communicate as little information as possible (this is analogous to communication with 

limited bandwidth). Those interfaces that exist must be explicit and obvious from the 

information contained in each module. This interface information should be made explicit 

in the component specification. Information hiding or uniform access principle means 

that the implementation details of the services offered by a module should not be revealed 

but access to those services made available through a uniform notation.  

• A reusable software component should follow the “open-closed” principle 

in that it will be usable as it stands (closed) while still being adaptable (open).  

• The software components should be generic to allow for type variation 

and thus creating a wider range of reuse. It should be independent of implementation. 
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• The software component should include routine grouping in order to be 

self sufficient and cover all possible actions required for a particular purpose (i.e., include 

the complete set of routines required to achieve its intended purpose). 

• The software component should cover a wide variety of implementations 

through a module family where it is not possible for a single module to satisfy all 

requirements, thus requiring a module / component family.  

• The software component should be independent of representation; that is, 

the module should be able to carry out an operation without knowing implementation 

details and variants. 

• The software component should factor out common behaviors. Instead of 

having a component for every type of implementation such as in a family of components, 

common behaviors can be factored out and modularized into a component reducing the 

number of components or modules in a family. This makes the reuse decision easier than 

having a different component for each type of implementation. This is a principle of 

modular design and is extended further by Aspect-oriented Programming (AOP) with its 

focus on separation of concerns.       

• The component shall be robust in its environment. That is, it should react 

appropriately to a wide range of abnormal conditions when operating in the context of a 

system of systems. These reactions should be transparent as described above. Moreover, 

it should be complete, as opposed to efficient, and able to handle the conditions expected 

in the operating environment (safety-critical system of systems) with consideration given 

to unexpected but possible events. In an environment that is not safety-critical, it may be 

enough for the component to perform the desired function, and not be highly dependable. 

However, in safety-critical systems it is essential that the component is dependable, or in 

other words, from a safety perspective, failures will not produce hazardous conditions. In 

safety-critical system of systems the component must be complete and be adequately 

dependable (i.e., comply with the dependability requirements of the software system, 

derived from the system dependability requirements). Dependability is defined as: 
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The trustworthiness of a computing system which allows reliance to be 
justifiably placed on the service it delivers.48 

Dependability consists of the attributes of reliability, availability, safety, and 

security. These complete components should include error handling, be fault tolerant, and 

satisfy the safety attributes of the dependability requirements of the software system. 

Measuring the degree to which a software component is complete for its intended 

operating environment is a difficult endeavor, especially given the size of the input and 

hazard space. To be complete with respect to requirements is different then being 

complete with respect to the environment. Only when the set of software component 

requirements is the same as the requirements for the context of intended use can 

completeness be truly measured, and it is very difficult to determine whether these sets 

are the same. The application of an effective requirements elicitation technique that 

captures context of use requirements including safety requirements can assist in ensuring 

that these sets are as identical as possible. Metrics can provide an indication of 

completeness, assuming that the requirements set, including safety requirements, is 

complete for the intended environment. These metrics will be described and discussed in 

§3F.    

• The software component should be free of default behavior that the 

software engineer has not specifically described for that component. 

• The component should be sufficiently evaluated and tested to verify the 

implementation of the safety attributes and requirements. Producer testing has been 

identified as one of the critical success factors for reuse.49 Testing is essential in 

producing high quality software and for actually creating confidence in the claimed 

quality (the safety case will contain a significant contribution from testing). Even when 

one designs for quality and a certain safety attribute, it is still difficult to confirm or 

establish a case for that quality and attribute without testing. Testing must be performed 

to a level that builds the required safety case and meets the safety risk. Software systems 

                                                 
48 Dependability.org, IFIP WG-10.4, November 2006, http://www.dependability.org. 

49 W.C. Lim., Managing Software Reuse, A Comprehensive Guide to Strategically Reengineering the 
Organization for Reusable Components, Upper Saddle River, NJ.: Prentice Hall PTR, 1998, p. 79. 
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safety testing must show the correct implementation of safety design requirements, verify 

safe implementation of safety-critical functions, and provide a basis for qualitative risk 

reduction in hazard analyses.50    

• The software components must be designed with safety in mind, 

consisting of safety features and protection mechanisms, and should use formal semantics 

for specifying safety attributes and safety contracts. This could be performed by using a 

formal specification language to specify safety requirements and then designing to them.  

The use of formal methods is mandatory in the development of certain safety-critical 

software and their use here would be valuable in specifying the requirements in a precise, 

unambiguous form. For example, “The methods used in the SRS (safety-related software) 

development process shall include …: a) formal methods of software specification and 

design; …”51 

• The component should comply with the important critical success factors 

for reuse quality of the component. If a reused component is not of sufficient quality, the 

success of any future reuse will be jeopardized. This comes back to the requirement that a 

reusable component should be of high quality and highly dependable and that quality or 

dependability be explicitly defined in terms of specific quality attributes (sometimes 

referred to as “-ilities”) that the specific safety-critical context will determine. It is 

important to determine those attributes and define them in a meaningful and deliverable 

way. Applicable standards may be used to support the achievement of the requisite 

component quality; however, it is important to realize that using standards will not 

guarantee the required quality. Moreover, not using appropriate standards or processes 

will almost ensure that the desired quality is not present.   

Safety contracts may be used to design components to be reused in safety-critical 

software. However, the application of these safety contracts is yet to be demonstrated. 

Furthermore, adequate tool support does not exist to ensure that these safety contracts are 

binding throughout the development process. 

                                                 
50 SW4582 Weapon System Software Safety Lecture Notes, Naval Postgraduate School, 2006. 

51 UK Ministry of Defence, Defence Standard 00-55, Requirements for Safety Related Software in 
Defence Equipment, 1 Aug 97.   
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D. REUSABLE SOFTWARE COMPONENT SPECIFICATION 

1. Overview 

It is not enough to design a component for reuse and believe that it will subsequently 

be reused just because it exists and possesses the required attributes. Reuse must be enabled 

through appropriate specification of the component, providing the ability for a potential 

reuser to perform a specification match against the new requirements.    

The goal of reusable software component specification should be to reveal the 

essential information about the component to allow an effective reuse decision to be made 

while concealing the nonessential. This is just like any other area in software engineering 

where the key is to find the right level of abstraction for the message you are trying to 

communicate. In defining what is required in the specification it is important to think of the 

user of the reusable software component and determine what information is required to make 

that reuse decision. Furthermore, the potential user of the software component must be able 

to locate a candidate component. The question to be answered is: “Does the software 

component meet my requirements and what are the risks?”  In safety-critical system of 

systems the answer will not be simple and will involve the composition of many different 

types of information on the component. What will be required is the ability first to identify 

potential reuse candidates based on how close the specification meets the requirements and 

then to confirm the requirements match through further analysis.     

2. Software Component Specification 

There are many ways to specify a software component and completely describe it 

to provide the desired level of understandability. The level of understandability for 

safety-critical system of systems components is relatively high. Early work on specifying 

software components included the 3C model by Weide et al.52 and Tracz,53 which was a 

highly abstract framework model: 

                                                 
52 B.W. Weide., et al. (1991) Reusable software components, Advances in Computers, Yovits, M. C 

(ed.), Vol. 33, Academic Press. 

53 W. Tracz., The 3 Cons of Software Reuse, in Proc of the Third Annual Workshop on Software 
Reuse, July, Syracuse, NY, 1990. 
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Concept. A statement of what a piece of software does, factoring out how 
it does it (abstract specification of abstract behavior). 

Content. A statement of how a piece of software achieves the behavior 
defined in its concept (the code to implement a functional specification). 

Context. Aspects of the software environment relevant to the definition of 
concept or content that are explicitly part of the concept or content.  

Under that model, it could be still quite difficult for a user to find the component 

sought. Another model has been suggested to describe the software component and 

increase the transparency of the information of a particular software component through 

an extension of the Class Responsibility Collaboration (CRC) cards used in object-

oriented design. This model, proposed by Riehle,54 also at a high level of abstraction, can 

be used to describe the component providing more relevant information for matching 

than the earlier models of Weide and Tracz.  

The CRCCC or CRC3 specification as described by Riehle55 at the component 

level is:  

• Component Identifier. Self-describing name.  

• Responsibility. What problem are we trying to solve?  

• Collaborations. Identify other components. 

• Constraints and Bounds. Design metrics for each element. 

• Controls. Prevent internal and external variations, behaving like a 
feedback control loop with a (possibly varying) set-point. This also 
involves a clear statement of the action to be taken when a control 
is violated.  

                                                 
54 R. Riehle., Software Design Metrics: Designing Software Components to Tolerances, ACM 

SIGSOFT Software Engineering Notes, Volume 32, Issue 4, Article 7, July, 2007, p. 1-6. 

55 Ibid., p. 4. 
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Extending on the specification models described above we propose a new 

specification model to provide the necessary information for specification matching in 

safety-critical system of systems. That model, the C5RA model, is described as follows: 

• Component Identifier. This is the name of the component, which should 

be semantically accurate and conform to an agreed ontology convention. 

• Collaborations. This specifies any other components it requires to 

collaborate with to solve the problem utilizing the same ontology for the component 

identifier (as per section 3C, the design goal is to keep collaborations to a minimum). 

Furthermore, it is to include interface specifications for those collaborations.  

• Constraints and Limitations. The constraints and limitations are 

expressed in terms of design metrics for each element, including those related to safety, 

quality attributes, pre and post conditions, and invariants. 

• Controls. The controls for the software component should describe the 

failure conditions, safety features, protection mechanisms, and any potential safety 

concerns, as well as the mitigation strategy. The controls are the means for preventing 

failure and for mitigating the hazard causal factors.   

• Configurations. This is a description of the set of possible internal 

software configurations for the component.  

• Responsibility. This is a description of what problem the software 

component will solve and will typically be expressed in functional terms. 

• Analysis. This is the analysis of all safety concerns for the component, 

including interface safety concerns. It also consists of those open problem or safety 

reports, any assumptions made in the design of the component, and any supporting data 

or relevant information that supports the safety case or possible certification.   

This model has a different definition of control to the Riehle model.  

This specification model is required in addition to the set of software artifacts that 

comprise the software component in order to provide a complete specification of the 

known information on the software component. The set of software artifacts would be 
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provided separately to support further analysis and integration of the component into the 

system and system of systems post selection. This organizes the information on a 

software component in a suitable form to enable specification matching. The C5RA 

specification model partitions the relevant information into separate descriptive 

categories that can enable the initial search and, along with the information contained in 

each of the software component artifacts, represents a complete collection of the 

information for a component. It is important that each descriptive category provides 

sufficient detail to achieve the initial match and that software component information is 

available to conduct further analysis in order to downselect on the most appropriate 

component. This makes it easier to identify for reuse with a more complete understanding 

of what it will do.  

To complete the C5RA specification of a software component, an accompanying 

ontology is required so that proper classification occurs including naming conventions 

and relationships between entities (composition and decomposition relationships), which 

will reduce duplication and aid in searching (specification matching). The ontology will 

be organizational and domain specific and should be contained in policy and managed by 

the reuse librarian as well as the managers of those areas within the organization 

developing reusable software components. A standard ontology among an industry would 

enhance the ease of specification matching to requirements and facilitate more effective 

reuse. This would require commitment from industry or system of systems regulators and 

mandate that component specifications follow the C5RA format and a descriptive 

ontology. For example, the FAA in AC20-148 requires a number of deliverables, as 

described in DO-178B, to be submitted and could request that information is provided in 

accordance with the C5RA format using a standardized ontology to provide a high level 

abstraction to aid their analysis. This could also be utilized by other regulators such as the 

Naval Air Systems Command for USN and USMC aviation and the ADF for military 

aviation in Australia. For example, within the aviation industry, operating safety-critical 

system of systems the high level choices in the ontology for potential component 

identifiers within avionics software components may be: aircraft management, mission 

computing, navigation, collision avoidance, radar, sensor systems, data links, diagnostics, 
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weapon management, and weapons. The collaborations section of the C5RA specification 

may also use the same ontology when referring to the components it collaborates with to 

solve the problem as well as the type of collaborations.    

The component shall be specified in a language and description model (such as 

UML) that is in demand, standardized, and widely understandable. This is significant in 

this application domain as certain languages are better suited to conveying information 

about safety than others but it will be dependent on the specific domain of the system of 

systems and what the industry standard specification language may be, including formal 

specification languages.  

Complete documentation of the software including the C5RA is important to 

ensure transparency, understanding, and to support an effective reuse decision in safety-

critical system of systems. This is required of all reusable software components as the 

code itself only contains approximately 10% of the information on the software.56 The 

C5RA abstract model will not contain all relevant information for all potential contexts of 

use but it represents a sound approach to capturing that information that is known in the 

current context and providing it for potential users of the reusable component. Potential 

future users may require more information, depending on the exact context of use. Major 

design decisions should be recorded in their respective artifacts with a complete 

description of the rationale. The metrics should be for software quality and efficiency and 

be specific to the component’s functionality or potential use. It is therefore essential that 

for reusable software components to be used in safety-critical systems, software quality 

metrics be documented (third C in C5RA specification). Metrics providing indicators of 

quality attributes would be applicable to the reusable components. Software quality 

metrics are essential for reusable software components with potential use in safety-

critical systems.  

All information about the component should be part of the component itself. 

Some languages support automatic documentation, increasing the reusability of the 

software (e.g., RDoc in Ruby).  The documentation on the reusable software component 

                                                 
56 M. Auguston., SW4540 Software Testing Lecture, Naval Postgraduate School, Monterey, March 

26, 2007. 
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should also contain information on certifications achieved (e.g., FAA certifications for 

airborne software components, especially what level of certification has been achieved 

for the particular registered reusable software component) and any open problem reports. 

It is particularly relevant to record whether in the case of civil aviation, the FAA has 

accepted a software component as an RSC (Reusable Software Component). This 

acceptance information will provide potential users of the software component with 

information of its certification baseline and what may be required for their particular 

context of use.  

The C5RA model represents an effective component specification scheme at a 

high level of abstraction; however, all information of the software component should be 

available and contained with the product itself. C5RA represents a good starting point 

that, when accompanied by an ontology and division of component information within, 

can aid in locating candidate components for reuse and thus finding a specification match 

for the requirements.  

E. SAFETY PROCESS AND HAZARD ANALYSIS 

1. Overview 

A component that has been designed for reuse, meeting the attributes of reusable 

software components, and is specified appropriately (making it easy to identify and 

locate; and hence perform specification matching) does not automatically make it suitable 

for use in safety-critical system of systems. Safety-critical system of systems are so 

complex57 that each software component must be assessed for suitability in the context of 

use through a hazard analysis or, in this specific case, a system-of-systems hazard 

analysis. This is further reinforced in the FAA’s air circular guidance (AC20-148) on 

reusable software components (RSC) where for acceptance as an RSC and each 

subsequent reuse requires that there be no safety and other concerns before approval, 

although it is not specified how this will be done.  

                                                 
57 The reasons for this complexity are largely as a result of their not being one controlling entity over 

all within, the fact that the systems were not usually designed to operate in a system of systems and that 
there are many possible configurations and interfaces between concomitant systems. 
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Having quality well specified software components does not guarantee safe 

operation in an environment and state space that is significantly large and contains 

additional hazards to those represented by the sum of all concomitant system hazards in 

the system of systems. These additional hazards are called emergent hazards and need to 

be identified, analyzed, and treated along with revisiting and analyzing those existing 

system hazards. An emergent hazard is a hazard that may occur within a system of 

systems that is not attributable to a single system.  

A system-of-systems hazard is any hazard that may occur within a system of 

systems. The system-of-systems hazards or hazard space consists of those hazards 

attributable to the individual systems of the system of systems and emergent hazards. A 

system-of-systems hazard analysis is essential before an effective reuse decision is made 

on a software component for use in a safety-critical system-of-systems. This is required 

once a specification match is achieved and the software component incorporated into a 

system. When a software component is considered for reuse in this environment, the 

system-of-systems hazard analysis must be updated including the analysis of the system 

hazards as well as any potential emergent hazards that could arise through the use of the 

system containing the reused software component. The reassessment of system hazards as 

a result of the new component is defined and documented in MIL-STD-882D and the 

system safety handbook;58 however, the emergent hazard analysis process is relatively 

immature. The identification of system-of-systems hazards involves a collaborative effort 

on behalf of all program members and stakeholders in the system of systems, just as it 

does in the identification of system hazards; however, in this new context that 

collaboration requires effective management to ensure a comprehensive set of hazards is 

identified and effectively treated.  A system-of-systems hazard ontology is required to 

assist in considering all potential hazard types, providing consistency and for providing a 

starting point for the emergent hazard analysis part of the system-of-systems hazard 

analysis. A detailed ontology will provide an abstract description of the hazard type and 

                                                 
58 National Aeronautics and Space Administration. System Safety Handbook (DHB-S-001). Dryden 

Research Flight Center, Edwards, CA, 1999.   



 48

assist in ensuring that all potential hazard types are investigated and analyzed to the 

extent possible given project constraints and the system of systems safety requirements.     

When a decision is made to reuse software in safety-critical system of systems the 

system-of-systems hazard analysis needs to be updated. It is possible to identify system 

hazards as a result of the reuse in the system(s) containing the reused software following 

the process defined in MIL-STD-882D or adapting the AS/NZS 4360 risk management 

standard; however, not all hazards will be considered using that process alone. The 

system hazards in the new context following reuse will likely involve those from the 

previous system hazard analysis and will provide a good starting point for the new hazard 

analysis. The goal in the case of reusing software is to update the system-of-system 

hazard analysis by updating the system hazard analysis and the emergent hazard analysis. 

That update may include new system hazards and emergent hazards that must be 

identified in the first instance. 

The system safety process and the risk management process are very similar, both 

starting with the identification of their respective elements followed by analysis and a 

way of treating those elements. The risk management process identified in AS/NZS 4360 

is more iterative, involving the monitoring, reviewing, communicating and consulting of 

risk information throughout the process than that defined in MIL-STD-882D. It is the 

identification part in the process that is the most difficult because it is often not easy to 

identify all risks, hazards, or potential risks and hazards. If the risks or hazards are not 

identified, then there is nothing that can intentionally or consciously be done to treat 

them. Furthermore, it is often the identification part of the process that is the entry point 

for risks or hazards and if missed here, they will not be considered. This is further 

exacerbated in a system-of-systems context because there are emergent hazards that 

cannot be attributed to any one system in isolation. Therefore, a technique that just sums 

those system hazards within the safety-critical system of systems will omit an important 

and significant category of hazards. Ways to overcome the identification problem are to: 
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• Use a well developed ontology of hazards or hazard categories and apply a hazard 

analysis process to each category. This will serve to identify the high level 

abstract hazards that could possibly exist and allow for exploration in more detail 

in each category, through hazard decomposition, considering the impact of the 

addition of the new component.  

• Brainstorm or use the collaboration of all stakeholders as a potential source of 

hazard information and empower them to identify hazards in their own area for 

consideration by the system safety team.  

• Utilize safety experts. This is required in most system safety efforts. System 

safety experts or team members are essential members of the development and 

operational team through the input of safety information into the process; 

however, they do not provide a systematic way of identifying all hazards. 

Furthermore, they do not necessarily have expertise in areas where hazards may 

exist. They are not the panacea to the identification problem but serve as an 

essential member and part of the solution.  

It is the hazard identification problem that is the most important because once 

identified, hazards can be considered and tracked and the appropriate treatment provided 

in the right form at the right time. 

When a software component or artifact is to be reused, the system-of-systems 

hazard analysis should be revisited and updated to include the new component and its 

system. One should also revisit the emergent hazards analysis and consider the emergent 

hazard categories for new hazards.   

A candidate process for conducting system-of-systems hazard analyses that 

incorporates software reuse is: 

1. Establish the context or environment for the system of systems. 

2. Identify all systems in the system of systems. 
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3. Conduct the system safety process as defined in MIL-STD-882D or similar 

standard such as AS/NZS 4360 to identify, analyze, evaluate, and treat all 

system hazards including those of the system(s) containing the reused 

software.  

4. Define the system-of-systems architecture. 

5. Identify the emergent hazards of the system of systems using a suitable 

technique based on a ontology of hazards (such as those partially identified by 

Redmond59 to include reconfiguration, integration, and interoperability 

hazards at a high level of abstraction) to assist in considering all the potential 

hazard types and their specifics based on the system-of-systems architecture. 

It is essential to utilize stakeholder collaboration and safety experts as part of 

this process.  

6. Analyze emergent hazards. 

7. Evaluate the mishap risk. 

8. Treat the mishap risks.  

9. Evaluate the residual mishap risk (and compare with the acceptable risk). 

The process involves continual feedback, review, monitoring, communication and 

consultation of hazard and risk information and continues until the mishap risk reaches an 

acceptable value determined by the appropriate governing body (or regulator) of the 

system of systems. Furthermore, the process is iterative in nature and not entirely 

sequential. Step 3, the system safety process, should be performed in parallel with steps 

4, 5, and 6 with collaboration and communication between them to ensure sharing of 

relevant hazard information. This process involves the monitoring, reviewing, 

communicating, and consulting of risk information throughout the process as per the 

AS/NZS standard.  

                                                 
59 P. Redmond., A System of Systems Interface Hazard Analysis Technique, Master’s Thesis, Naval 

Postgraduate School, Monterey, CA, March 2007, p. 33. 
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F. METRICS 

1. Overview 

An important part of the information about any software component and program 

activity are the relevant metrics. This section introduces those metrics of interest when 

developing software for reuse in safety-critical system of systems and those metrics 

relevant to measuring the success of a reuse program. In the C5RA specification model, 

these metrics should be made available to enable future reuse (as well as evolution) and 

should be specified within the Constraints and Limitations element of the model.     

2. Software Safety Metrics 

To minimize risk (safety or otherwise) and increase the chance of a successful 

outcome, quantitative support for management decision making is required; that is 

provided through effective metrics. Metrics are an extension of measurements when 

provided within context, enabling greater interpretation and understanding of what is 

occurring. They are indicators that provide the impetus for control of what is of value. 

Software safety cannot be proven or predicted due to environmental uncertainty 

and because exhaustive testing is infeasible. Even if all potential hazards are identified, 

one can only demonstrate that you have not found the software exhibiting any behavior 

that could result in a hazard, not that the software is free from conditions that will result 

in a hazard. Formal methods, which are the software development activities that employ 

mathematically based techniques for describing, reasoning about, and realizing system 

properties, expressed using formal languages60 will not reveal the absence of a safety 

requirement. Software safety metrics will not tell us whether the system is safe, but they 

can provide indicators of potential safety problems and risks. Software safety risk metrics 

are intended to support detection and analysis of software-related safety issues in a timely 

manner and make potential risks visible. Furthermore, they can be used in developing the 

                                                 
60 D. Drsinsky., J.B. Michael., M. Shing., The Three Dimensions of Formal Validation and 

Verification of Reactive System Behaviors, Naval Postgraduate School Technical Report NPS-CS-07-008, 
Monterey, CA, August 2007.   
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safety case for the software and in providing quantitative evidence to regulatory 

authorities. The organizational use of metrics can be characterized by the CMMI process 

maturity level of that organization. 

Most of the work in deriving software safety metrics is based on the Goal, 

Question, Metric (GQM) methodology developed by Basili and Weiss, which uses a 

general process to determine effective metrics. That general process involves: 

1. Identification of information needs. 

2. Interpretation of an information need as being within an information 

category. 

3. Identification of measurable concepts within each information category. 

4. Identification of prospective measures, associated with each measurable 

concept. 61 

This approach to determine effective metrics ensures the rationale behind the 

metric exists and that what is subsequently measured has value and forms an aid to 

effective decision making and control.  

Reliability, an important software quality metric and sub-element of 

dependability, can be used as an indirect indicator of safety, with caution. Although 

orthogonal dimensions of dependability, they are often erroneously equated. Reliability is 

defined as the probability that an item will perform a required function, under stated 

conditions, for a stated period of time.62 Safety is the probability that conditions that can 

lead to a mishap (hazards) do not occur, whether or not the intended function is 

performed. In general, reliability requirements are concerned with making a system 

failure free, whereas safety requirements are concerned with making it mishap free. 

These are not congruent goals and are therefore not synonymous. Reliability is concerned 

                                                 
61 V. Basili., D. Weiss., A Methodology For Collecting Valid Software Engineering Data,  IEEE 

Transactions on Software Engineering, October 1984. 

62 D.J. Smith., Reliability Maintainability and Risk, practical Methods for Engineers, Seventh Edition. 
Oxford, England.: Elsevier Butterworth-Heinemann, 2005, p. 12. 
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with every possible software fault,63 whereas safety is only concerned with those faults 

that may result in actual system hazards. Not all software faults cause safety problems, 

and not all software that functions according to specification is safe. Severe mishaps have 

occurred while something was operating exactly as intended, that is without failure. 

Improving reliability will not necessarily improve safety. It will depend on where the 

reliability improvement is made. Improving reliability by removal of faults or preventing 

the propagation of faults may not remove or prevent propagation of those faults that lead 

to safety related failures and thus not improve safety at the same time. If, however, all 

safety requirements are in the software specification, then reliability can provide a more 

accurate predictor or indicator of safety. If reliability is improved in the area of safety-

critical software and all safety requirements are included, an increase in safety will result.  

Reliability of the software component and its system is important; however, it should be 

monitored and analyzed separately from safety, when ensuring system dependability 

requirements are achieved.   

The identification and implementation of safety requirements is a key function in 

system and software safety. All software safety requirements are to be met in the design 

and implementation of the software and must be verified: each safety requirement must 

have a test case or cases associated with them. For verification there needs to be a 

mapping between the safety requirements and test cases with this mapping reflected in 

the Software Safety Requirements Traceability Matrix.64 A potentially useful metric to 

determine whether verification activities have been identified for the safety requirements 

is the number of safety requirements unlinked to test cases (SRUTC).65 If this value does 

not tend to approach zero over time, then the safety risks are not being identified as 

requiring testing or verification.  

 

                                                 
63 Fault in this case refers to a defect within the system. 

64 J.B. Michael., SW4582 Weapon System Software Safety Lecture Notes, Naval Postgraduate 
School, 2006. 

65 V. Basili., K. Dangle., L. Esker., F. Marotta., Gaining Early Insight into Software Safety: Measures 
of Potential Problems and Risks, in Proc of the Systems & Software Technology Conference, June 2007, p. 
22. 
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If f(x) is the Safety Requirements Unlinked to Test Cases (SRUTC) and x is time 

to release of the software, then: 

 lim     f(x) = 0 
x→0 

Equation 1:  Desired Value of SRUTC Over Time  

SRUTC is most useful during the requirements analysis and design phases where 

it is important that a means of verification has been established for each safety 

requirement. SRUTC can ensure that when a safety requirement is identified and 

analyzed, it is written in a manner that aids testing and plans for proof of it being met.  

Another similar metric that we propose that is available later in the system 

lifecycle is the safety requirements demonstration metric (SRDM),66 which is obtained 

by dividing the total number of separately identified safety requirements in the software 

requirements specification (SRS) that have been successfully demonstrated by the total 

number of separately identified safety requirements in the SRS. Ideally the SRDM should 

be equal to one, indicating that the implementation of each safety requirement has been 

tested.   

SRDM   =   Total Number of Demonstrated Safety Requirements          

Total Number of Safety Requirements 

Equation 2.  Software Requirements Demonstration Metric 

 

SRDM differs from SRUTC in that the former monitors the demonstration of the 

safety requirements whereas the latter ensures that the verification activity has been 

identified.  

To place the required emphasis and priority on safety, it is essential in the 

development of safety-critical software that an adequate proportion of the requirements 

set consists of safety requirements. Thus the question that could be asked here is: “Are 

there a reasonable number of software safety requirements being identified?” The metric 

                                                 
66 Adapted from the requirements demonstration metric in IEEE standard for Software Quality 

Assurance Plans, 730-1998, p. 3. 
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could be Percent Software Safety Requirements (PSSR),67 which is the percentage of 

software safety requirements relative to the total number of software requirements. If the 

number of identified software safety requirements is not “reasonable” relative to the 

platform family or in line with system safety in general, this would represent a risk. If 

there are too few software safety requirements, this would represent a safety risk and 

alternatively too many could result in cost and schedule risks for the project or 

development. The assessment of reasonableness would be based on heuristics derived 

from past experience in the development of safety-critical software and on engineering 

judgment of what would make a reasonable percentage given the potential hazards and 

risks. This metric has the most relevance during requirements and analysis activities of 

the software life cycle, where an early indication of whether safety is being adequately 

considered in the development is available.   

PSSR =  Number of Software Safety Requirements 
        Number of Software Requirements  

Equation 3.   Percent Software Safety Requirements 

 
Other safety metrics of value are related to hazard identification and provides 

answers to the following questions: 
 
• Have a reasonable number of software safety hazards been identified? 
 
• Are causes, controls and verifications being generated over time? 
 
• Does every cause have at least one control? 
 
• Does every control have at least one verification to test that the control has 

been implemented? 

The subsequent metrics68 are: 

 

                                                 
67 V. Basili., K. Dangle., L. Esker., F. Marotta., Gaining Early Insight into Software Safety: Measures 

of Potential Problems and Risks, in Proc of the Systems & Software Technology Conference, June 2007, p. 
17. 

68 V. Basili., K. Dangle., L. Esker., F. Marotta., Gaining Early Insight into Software Safety: Measures 
of Potential Problems and Risks, in Proc of the Systems & Software Technology Conference, June 2007, p. 
18. 
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• Percent Software Hazards (PSH), which is the number of software safety 

hazards divided by the number of system safety hazards. If number of identified hazards 

is not “reasonable” then there are problems with the hazard management and analysis 

process for software.  

PSH =      Number of Software Safety Hazards 
  Number of System Safety Hazards  

Equation 4.   Percent Software Hazards 

 
This metric, like the Percent Software Safety Requirements, will indicate whether 

software hazards are receiving the appropriate attention compared to all system safety 

hazards. This metric also has most relevance during requirements and analysis activities 

of the software life cycle to provide early consideration and indication of whether 

software safety hazards are being appropriately identified in order for them to be 

managed. This metric should also be updated throughout the software life cycle to keep 

the safety case current and to ensure software safety hazards are being appropriately 

considered when the system and software undergoes changes and evolution.  

• Controls with causes (CwC) is the number of software safety hazard causes for 

which there is a control divided by the number of causes for all software safety hazards. 

If there are causes without controls then there are problems with the hazard management 

process for software. This metric is most relevant during the analysis, design, and 

implementation phases, where software safety hazard controls are designed into the 

software component and system.   

CwC =        Number of Causes with a Control           
                      Total Number of Causes for all Hazards 

Equation 5.  Controls with Causes 

 

•  Verifications with controls (VwC) is the number of controls for which there is a 

verification divided by the number of controls for all hazard causes. If there are controls 

without verification, then there are problems with the hazard management and analysis 

process for software. 
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VwC =   Number of Controls for which there is a Verification 
                     Total Number of Controls for all Causes of Hazards 

Equation 6.  Verifications with Controls 

This metric follows on from CwC, where it is essential for software assurance that 

the hazard-cause control is associated with an appropriate verification. This metric is 

most relevant during the analysis, design, and implementation phases, where software 

safety hazard controls will be linked to verification activities. These verifications will 

subsequently guide testing of the software component to ensure that the controls 

implemented perform as intended and reduce the safety risk.  

Another metric identified by Basili et al. within hazard management that can be a 

useful indicator of safety answers the question: “Is the number of open software hazard 

components (causes, controls, and verifications) shrinking over time?” What is desirable 

is for the number of open software causes and controls to be closing over time to indicate 

that hazards are progressively being brought under acceptable control. This metric, called 

the Hazard Cause/Control Closure Evolution (HCCE),69 is a three point moving average 

of the set of open causes and controls at three consecutive time intervals. This metric 

indicates relative performance of closing hazard causes with controls and verification 

with respect to previous time periods (rather than just looking at the number of open 

causes in isolation). If greater than one, this would suggest that hazard causes or controls 

are opening faster than they are closing. What is important here is to understand the 

relationship between the metric and the stage in the lifecycle the software is in. Early on 

values greater than one are acceptable; however, at some point the value should remain 

below one. The value will also depend on the type of system developed and its 

environment, although at some stage it would be expected that hazard causes or controls 

will be opening faster than they are closing (early in software life cycle). A decline in this 

value over time will suggest that hazard causes and their controls are being brought under 

control and be representative of system maturity and context of use stability.   

                                                 
69 V. Basili., K. Dangle., L. Esker., F. Marotta., Gaining Early Insight into Software Safety: Measures 

of Potential Problems and Risks, in Proc of the Systems & Software Technology Conference, June 2007, p. 
19. 
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Another metric identified by Basili et al. determines whether the software being 

developed is receiving the appropriate level of rigor for its software risk. Level of rigor is 

defined as: 

The amount of requirements analysis, development discipline, testing, and 
configuration control required to mitigate the potential safety risks of the 
software component.70 

Example level of rigor metrics are Percent Requirements Level of Rigor 

(PRLOR) and Percent Code Level of Rigor (PCLOR),71 which compares whether the 

level of rigor employed is what is expected of software with a certain level of autonomy 

or control categorization. This is similar to ensuring that the software receives the 

appropriate level of analysis and testing for its control category according to the software 

hazard risk index within the software risk assessment matrix. An example software level 

of rigor and what is expected at each software level is contained in Appendix A. Another 

example of a similar approach is the software life cycle process objectives and outputs by 

software level provided in DO-178B Software Considerations in Airborne Systems and 

Equipment Certification.72  It is important to have a metric that indicates whether the 

appropriate rigor or attention is given to the category of software. That metric can be 

expressed in percentage terms against what is expected. If these percentages are not 

within reasonable values, then safety-critical software might not be developed to the 

appropriate level nor receive the appropriate level of attention during development. 

Additionally, if the percentage is too high, this could increase the cost and schedule risk 

for the project. This type of metric is relevant throughout software development and can 

be used during all activities in the development of software for safety-critical systems. 

This metric also appears to be applying a CMMI type approach to the development of 

safety critical software and ensuring that certain activities occur depending on the level of 

software being developed. There is an underlying assumption in this metric that the 

                                                 
70 V. Basili., K. Dangle., L. Esker., F. Marotta., Gaining Early Insight into Software Safety: Measures 

of Potential Problems and Risks, in Proc of the Systems & Software Technology Conference, June 2007, p. 
33. 

71 Ibid., p. 21. 

72 Radio Technical Commission for Aeronautics, DO-178B / ED-12B, Software Considerations in 
Airborne Systems and Equipment Certification, Washington D.C., 1 December 1992, Annex A. 
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development effort should depend on the level of criticality of the software. There should 

also be an industry wide accepted best practice for what that effort should be when 

developing safety-critical software. As described later in this section, the +SAFE73 

extension to the CMMI provides an example of this type of approach.      

It is also essential to determine whether software safety defects are being 

resolved. A relatively simple metric can be applied here for safety defects that is a 

measure of the number of safety defects and then a list of them in priority order. This will 

assist in the progress of resolving safety defects and provide an indicator of safety for the 

software. Furthermore, safety defect density can indicate how effectively the 

development designed software that was free of safety defects. This metric could also be 

used to compare projects and create a baseline for organizational process improvement in 

the removal of safety defects. This metric is applicable throughout verification and 

testing where the defects are identified and the test results used during both redesign and 

re-coding efforts.  

Another approach to minimizing risk including safety risk is the application of the 

SEI CMMI. The CMMI characterizes an organization based on the maturity of its 

processes on a scale of one to five, from initial (1) to optimized (5).  The premise 

underlying CMMI is that improved and mature processes result in higher quality and risk 

reduction. Contracting with an organization at a higher maturity level on the CMMI 

model reduces development risk and increases the chances of a successful outcome. The 

Defence Materiel Organisation (DMO) in Australia, users of the CMMI  to improve its 

acquisition and maintenance of software-intensive systems, recognized that the model 

may inadequately address the specialized needs relating to safety-critical systems and so 

developed a safety extension in conjunction with the Software Verification Research 

Centre (SVRC) to the CMMI called “+SAFE”.74 The aim of this extension is to identify 

                                                 
73 Software Engineering Institute, Defence Materiel Organisation Australian Department of Defence. 

+SAFE, V1.2 A Safety Extension to CMMI-DEV, V1.2, Technical Note CMU/SEI-2007-TN-006, March 
2007. 

74 Software Engineering Institute, Defence Materiel Organisation Australian Department of Defence. 
+SAFE, V1.2 A Safety Extension to CMMI-DEV, V1.2, Technical Note CMU/SEI-2007-TN-006, March 
2007. 



 60

the safety strengths and weaknesses of product and service suppliers, and to address 

identified weaknesses early in the acquisition process.75 The safety extension was 

developed so that CMMI appraisers and users can become familiar with the structure, 

style, and content provided to reduce dependence on safety domain expertise.  

This extension to CMMI consists of two safety process areas added to CMMI-

DEV to provide an explicit and focused basis for appraising or improving an 

organization’s capabilities for providing safety-critical products. Those two safety 

process areas are Safety Management within the Project Management CMMI category 

and Safety Engineering within the Engineering CMMI category. It essentially provides a 

process for developing safety-critical products, and a metric or measurement would be 

how well does the organization’s process for developing safety-critical software follow 

that defined by the +SAFE extension. In other words, the metric would be representative 

of and answer the question of “how close to this benchmark is the organization?” The 

metric used is the integration of the percent satisfaction of the specific goals within each 

process area and CMMI category. The closer the organization is to the +SAFE process 

the greater the organization’s understanding of the safety domain and the increased 

likelihood that the organization will be able to deliver safe software. This information 

would not only be useful in the development of safety-critical software, but it also 

provides evidence for input to the safety case for the software (and the parent system) and 

assists in making assessments of an organization’s capability for developing safety-

critical software.          

The work of Jones proposes a key node safety metric and a safety improvement 

algorithm. The key node safety metric predicts the relative safety between different 

versions of software modules using a heuristic analysis of fault tree structure and 

calculates a value based on the fault tree properties such as key node height, size of key 

node sub-trees, and the number of key nodes. The safety improvement algorithm provides 

an objective method of improving a system’s safety by determining which components 

                                                 
75 M. Bofinger., N. Robinson., P. Lindsay., M. Spiers., M. Ashford., A. Pitman., A. Experience with 

Extending CMMISM for Safety Related Applications, in Proc of the 12th International Symposium of the 
International Council on Systems Engineering, (INCOSE'02), Las Vegas, Nevada, 2002, p1. 
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need improvement and by what amount in order to achieve the desired increase in safety. 

The algorithm also provides an estimate of resource requirements in man-hours to meet 

the safety requirement.  The key node safety metric has much promise and benefit as it is 

based on causal factors and the relationships between events that result in hazards. 

Moreover, as during hazard analysis, fault trees are prepared incorporating this metric 

would be easy as it could leverage off the existing fault trees and involve defining the 

properties of those already identified key nodes. This metric has potential value in 

enabling decisions on safety of designs, minimizing the potential for causal factors to 

propagate, and in building in fault tolerance. This metric requires testing on whether it  

benefits the design and safety assessment of a safety-critical software-intensive system. 

With this metric, a pilot project should be used to validate it and to test whether it 

effectively supports decision making. If this metric is validated, it could have a 

significant impact on the evolution and improvement of software components in safety-

critical system of systems.  

Test metrics are also relevant to software safety assessments. The test coverage 

and results will be a source of metrics information to determine the safety of the software. 

The relevant metrics include test case criteria, such as statement, decision, condition, and 

define-use pair and usage-based coverage. It would be preferable to conduct higher 

criteria testing on the safety-critical software and that software that has successfully 

passed those higher criteria testing can be inferred as being safer. The level of testing and 

its coverage will depend on the resources available and the requirements of any 

regulatory agency. The degree of test coverage of safety critical software should be 

adequately determined. If software testers are aware of the need for additional test 

coverage of safety critical functions, these will be incorporated into the routine testing 

which will then influence developers to design in safety as they will be aware of the 

increase in quality required of their software.  

Although the above software safety metrics appear to be effective in theory, they 

should be validated in a realistic environment. A number of the metrics also rely on 

subjective assessments, baselines, or heuristics to determine what is a reasonable value 

for the metric, so the application of these may take time and a number of developments to 
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achieve optimal outcomes (i.e., determination of what “reasonable” values are). These 

software safety metrics add value to the development and provide an important indicator 

of software safety and support management decisions. They are also important safety 

indicators for designing reusable software components for use in safety-critical system of 

systems. 

It is important not to act on metrics information alone, to understand that they are 

indicators of potential safety issues, and to use them as triggers for further analysis, 

which should be inherently available in the component. In the application of metrics it is 

important that the essential ones be implemented (those that provide the best indication of 

safety) and the collection methods resourced. It is essential to focus on the key indicators 

and not try to collect as much information as you can as this will only distill that 

information that is critical. This needs to also be balanced with the measurements already 

conducted so that the safety metrics collection process integrates seamlessly with other 

metrics processes.  

There are other metrics, such as those identified in IEEE Standard for Software 

Quality Assurance Plans, 730-1998 (branch metric, decision point metric, domain metric, 

error message metric) which provides minimum acceptable requirements for preparation 

and content of Software Quality Assurance Plans (SQAPs) applicable to the development 

and maintenance of critical software; however, they may relate more to the aggregation 

of quality attributes as opposed to the more safety focused metrics described here. 

Furthermore, this standard provides the minimum requirements for SQAPs and would 

thus be expected to be applied by most organizations developing and maintaining critical 

software. What is required are metrics that are more focused on safety and descriptive of 

the safety of the software. 

3. Summary of Software Safety Metrics 

Table 3 represents a summary of the software safety metrics identified herein, 

their relative ranking of importance (usefulness) in designing safe software and the part 

of the software lifecycle where they are most relevant. 
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Rank Software Safety 
Metric Description Expected & 

Preferred Values 

Software Life 
Cycle Activity 

with most 
Relevance 

1 Percent Software 
Safety 
Requirements 
(PSSR) 

The number of software safety 
requirements divided by the 
number of software requirements 

Reasonable Value 
based on heuristics 
and experience 

Requirements 

2 Percent Software 
Hazards (PSH) 

The number of software safety 
hazards divided by the number of 
system safety hazards 

Reasonable Value 
based on heuristics 
and experience 

Requirements 

3 SEI CMMI 
+SAFE Extension 

A process for developing safety 
critical products and a measure of 
how close to the standard a 
developer is  

100% meaning that 
the organization 
complies with all 
aspects of the 
preferred process 

Assessed before 
development 
begins  

4 Percent Level of 
Rigor (or analysis 
and testing effort) 

Compares the level of rigor 
employed to what is expected of 
software with a certain level of 
autonomy or control 
categorization 

100% Design and 
Implementation 

5 Software 
Requirements 
Unlinked to Test 
Cases (SRUTC) 

The number of safety 
requirements unlinked to test 
cases 

0 or approaching 
zero 

Requirements, 
Analysis, and 
Design 

6 Open Software 
Safety Defects 

The number of open software 
safety defects with priority  

0 Design, 
Implementation, 
and Testing  

7 Controls with 
Causes (CwC) 

The number of causes with a 
control divided by the total 
number of causes for all hazards 

1 Design and 
Implementation 

8 Verifications with 
Controls (VwC) 

The number of controls for which 
there is a verification divided by 
the number of controls for all 
hazard causes 

1 Design, 
Implementation, 
and Testing 

9 Hazard 
Cause/Control 
Closure Evolution 
(HCCE) 

Three point moving average of 
the set of open causes and 
controls at three consecutive time 
intervals 

1 or less. Greater 
than 1 means hazard 
causes or controls 
are opening faster 
than they are closing  

All activities. 
Design and 
Implementation 

10 Software 
Requirements 
Demonstration 
Metric (SRDM) 

The total number of demonstrated 
safety requirements divided by 
the total number of safety 
requirements 

Reasonable Value 
determined by past 
experience 

Testing 

11 Test Metrics Test case criteria such as 
statement, decision, condition and 
define-use pair and usage-based 
coverage and the results 

Type of test 
coverage and a 
successful test  

Testing 
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12 Key Node Safety 
Metric (S) 

A metric for predicting the 
relative safety between different 
versions of software modules 
using heuristic analysis of fault 
tree structure, based on fault tree 
properties such as key node 
height, size of key node sub-trees, 
and the number of key nodes 

0 to 1. The higher 
the value the better  

Design and 
Implementation 

Table 3.   Software Safety Metrics Ranking and Relevance  

G. REGULATOR NEEDS 

As explained in Chapter II, the regulator will have significant influence on the 

elements of the framework and what evidence is required for each. This will depend on 

the specific regulator, domain of operation, and the public interest as most regulators are 

independent public bodies established to protect the public interest and public safety. 

They will exert influence and help shape the specific requirements within each element of 

the framework as described in this chapter.  

H.  SUMMARY 

 The framework described herein prescribes that in order to successfully 

implement software reuse in safety-critical system of systems, organizational factors 

must be supportive, components must be designed for reuse, those components 

sufficiently specified, and an assessment on the environment suitability made before 

deployment. The metrics covered in this chapter support the safety aspects of the 

software and those that are related to measuring the success of the reuse itself. The 

regulator will be expected to further shape the requirements of each section of the 

framework and specify the form that evidence is to be presented in and when.   
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IV. APPLICATION OF THE FRAMEWORK 

A. APPLICATION OF THE FRAMEWORK 

For the purpose of discussing how this framework may be applied, a generic 

avionics software component is chosen as the reusable software component and the 

safety-critical system of systems is the U.S. Naval aviation system of systems. It is 

assumed that there is a desire among stakeholders to reuse this avionics software in future 

aircraft systems or additional platforms within a system of systems (as evident in Navy’s 

open architecture strategy, which among other things seeks to enable component reuse). 

The system of systems includes the aircraft, air traffic control, communication systems, 

naval vessels and bases, and the ground- and air-based systems of all those elements 

interoperating with Naval aviation to achieve the common mission.  

1. Example Process Applying the Framework   

Although the framework for software reuse in safety-critical system of systems is 

process neutral, this example application of the framework will utilize a process for 

demonstration purposes only. The framework is applied throughout the software life 

cycle of the reusable software component and is shown in figure 4.  

 

Figure 4.   Example Process Showing Application of the Framework 
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When developing this avionics software component and determining its 

acceptability for reuse in the environment, the following example approach may be 

applied: 

• Establish organizational factors that are supportive of reuse to ensure that 

incongruent organizational factors will not undermine a reuse approach. Create 

the appropriate organizational structure to manage the software component and 

a software repository staffed with the appropriate people to manage it.  Invest 

the necessary resources in the reuse effort to ensure that the software 

component is suitable for reuse with significant stakeholder support for the 

decision to design for reuse. Align organizational policies so that they 

incentivize reuse and ensure that it is managed effectively. 

• Design for reuse through the appropriate investments in quality and the 

utilization of the desirable software component attributes described in §3C3. 

Apply the software safety metrics described in §3F2 to indicate progress in 

designing in safety in their respective order of significance at the applicable 

stage throughout development to indicate progress or achievement in 

minimizing the mishap risk. The software safety metrics are applied to ensure 

that safety is considered throughout the software development process.   

• Specify and document the software component using the guidelines in §3D2. 

Ensure that all information on the component remains with the component 

including the C5RA software component specification model utilizing an 

appropriate stakeholder (including regulator) endorsed ontology and the 

respective software artifacts for the software component. The specification of 

the component must facilitate searching by a respective future user (i.e., 

specification matching). That is, a potential user must be able to decide 

whether the component meets their requirement and provide more detailed 

information once a decision has been made to investigate the component 

further. The C5RA model should be used as a high level abstract description of 

the component, coupled with an appropriate stakeholder-endorsed ontology to 

assist in providing the information required by future potential users and 
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maintainers of the software as it evolves. All software artifacts for the 

component should be properly documented in the respective accepted 

languages and models and provided with the C5RA model information.  

• The component should be placed in the software repository where that 

information can be easily accessed, supported by tools, and managed by the 

appropriate people in accordance with policy.   

• Software component information should be made available to the system of 

systems regulator, to provide early software component descriptions and 

information that is necessary for the regulator to be actively involved in the 

certification process. This information is to be provided to the regulator 

(certification authority) regardless of whether it has been provided to the 

applicant, integrator, or user in order to achieve certification for operation in 

the system of systems. The exact timings for provision of this information will 

be dependent on the particular regulator. 

• Perform a system-of-systems hazard analysis that incorporates the reusable 

software component. This system-of-systems hazard analysis will include the 

identification, analysis, and treatment of all system of system hazards (i.e., 

system hazards and emergent hazards). This analysis information will be used 

as input to the safety case and to update the Analysis element of the C5RA 

model which will subsequently be provided to the regulator as required. 

Evidence must be obtained and captured that is supportive of an acceptable 

level of safety risk (that is, the safety-critical system of systems to contain the 

component is considered “safe enough”76).  

• Deploy the software component in the system of systems if the system-of-

systems hazard analysis (environment match) is supportive of an acceptable 

level of safety or mishap risk and the regulator accepts. Operational 

                                                 
76 Safe enough may be defined as that point where the benefits of the system outweigh the risks to be 

determined on a case-by-case basis by the relevant system stakeholders.  
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information is used to constantly update to system-of-systems hazard analysis 

to ensure an acceptable level of safety / mishap risk.   

• Capture reuse metrics throughout the software life cycle and update the reuse 

cost-benefit analysis in order to measure the success of the reuse program. This 

will ensure that reuse performance is measured to enable leveraged success and 

to populate and update institutional memory.  

• When the decision is made to reuse the software component (leveraging off 

that information in the component specification) within the existing system of 

systems or in another system of systems, the safety analysis (system-of-

systems hazard analysis) is to be repeated with analysis information used to 

update the component specification and subsequently provided to the regulator.  

 

B. CONCLUSION 

To demonstrate how the framework may be applied, a process was chosen and a 

generic avionics software component used as the reusable software component. This 

demonstration provided an example and discussion of how the framework may be applied 

to safety-critical system of systems where software reuse is desired.    
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V. CONCLUSION 

A. KEY FINDINGS AND ACCOMPLISHMENTS 

Software reuse is viewed as a means for achieving rapid system development, 

saving resources and time, and keeping up technologically in an increasingly advancing 

global environment. Reuse offers many benefits and yet much of the software developed 

today is still newly developed but not unique. Much of the problem in making software 

reuse more prevalent is that software was not designed with reuse in mind and that not 

enough readily available information is shared on a software component. Within a safety-

critical system of systems, the demand for information on the software components is 

even greater and more critical.  

At present there is very little guidance in standards on how to best utilize software 

reuse within an industry or in a system of systems. To best utilize software reuse, we 

created a framework to enable reuse within a safety-critical system of systems. That 

framework consists of the enabler made up of organizational factors and three pillars: 

component attributes (quality), component specification (information capture and search 

effectiveness), and safety analysis. Congruence between all framework elements is 

required for software reuse to be a success in a safety-critical system of systems and any 

one element that is not supportive may lead to failure. This research focused on 

developing the framework and describing all elements required for effective reuse. In this 

context more information on a software component is required for reuse due to the 

complexities and potential system configurations. In essence, a system of systems is 

system reuse where existing systems are reused in larger system configurations for 

potentially different missions.  

This research described the attributes of reusable software components, including 

their safety-supportive metrics and how they should be specified, and explored a process 

for performing a system-of-systems hazard analysis. The software component attributes 

are based on well accepted software engineering principles and those metrics that support 

the integration of system safety into the design of the software component. Software-
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safety metrics were identified, ranked according to their importance, and described by 

their relevance in the software life cycle. Component specification expanded on a set of 

models for describing components and provided an abstract description of the software 

component for performing a specification match as well as including all relevant 

information with the component itself. The system-of-systems hazard analysis discussed 

the environment match of the software component that must be supportive of the 

component’s use and be at an acceptable level of mishap risk once treatment strategies 

have been enacted.  

This research leveraged off other efforts to make software reuse more prevalent, 

such as the FAA guidance on reusable software components and the U.S. Navy’s open 

architecture strategy. The FAA guidance was thorough on software reuse but focused on 

collaboration, communication, and product deliverables rather than a systematic approach 

across the entire software life cycle. 

A process then decribed how the framework may be applied to the reuse of a 

generic avionics software component within an aviation system of systems context.   

It is important to realize that it takes a concerted effort and commitment from 

many people to make software reuse a reality, especially in the context of safety-critical 

system of systems. Organizational factors must support reuse across stakeholders; the 

software component must be designed for reuse incorporating those principles and 

properties that support reuse and designing in of quality; the software component must be 

specified accordingly to provide the necessary information and to facilitate more 

effective search (specification matching); and finally the software component must fit the 

proposed deployment environment. Reuse should not blindly occur without consideration 

of the environment in which the system will be deployed.      

B. FUTURE WORK 

One avenue of future work is to refine the specification model with a fully 

developed ontology with the aim of incorporating further precision into the specification  
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and building a better shared understanding by stakeholders. This ontology is likely to be 

domain or system of systems domain specific and may require regulator and stakeholder 

endorsement for its success.  

Additionally, future work could involve developing a case study or the testing of 

the framework in a system of systems setting with the aim of refining its applicability to 

the safety-critical system of systems domain.  

 Further work could also include the development of additional metrics that deal 

explicitly with reuse components for safety-critical system of systems.  
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APPENDIX: EXAMPLE SOFTWARE LEVELS OF RIGOR  

A. EXAMPLE SOFTWARE LEVEL OF RIGOR (LOR) MATRIX AND 
REQUIRED LEVEL OF RIGOR SOFTWARE PRODUCTS77  

Hazard 

Severity 

Software Level Autonomy 

 (I) Software 

Exercises 

autonomous 

control over 

potentially 

hazardous 

hardware systems, 

subsystems or 

components 

without the 

possibility of 

intervention to 

preclude the 

occurrence of the 

hazardous event. 

(IIa) Software 

Exercises control 

over potentially 

hazardous 

hardware systems, 

subsystems or 

components 

allowing time for 

intervention by 

independent 

safety systems to 

mitigate the 

hazard. However, 

these systems by 

themselves are 

considered not 

adequate.  

(IIb) Software 

item displays 

information 

requiring 

immediate 

operator action to 

mitigate a hazard. 

Software failures 

will allow or fail 

to prevent the 

hazard’s 

occurrence. 

(IIIa) Software 

item issues 

commands over 

potentially 

hazardous 

hardware 

systems, 

subsystems or 

components 

requiring 

operator action 

to complete the 

control function.   

There are 

several, 

redundant, 

independent 

safety measures 

for each 

hazardous event. 

(IIIb) Software 

generates 

information of a 

safety critical nature 

used to make safety 

critical decisions.  

There are several, 

redundant, 

independent safety 

measures for each 

hazardous event. 

(IV) Software 

does not control 

safety critical 

hardware systems, 

subsystems or 

components and 

does not provide 

safety critical 

information. 

Catastrophic 

(I) 

LOR3 LOR3 LOR3 LOR2 LOR2 N/A 

Critical    

(II) 

LOR3 LOR2 LOR2 LOR2 LOR2 N/A 

Marginal 

(III) 

LOR2 LOR2 LOR2 LOR1 LOR1 N/A 

Negligible 

(IV) 

LOR1 LOR1 LOR1 LOR1 LOR1 N/A 

Table 4.   Example Software Level of Rigor Matrix 
                                                 

77 V. Basili., K. Dangle., L. Esker., F. Marotta., Gaining Early Insight into Software Safety: Measures 
of Potential Problems and Risks, in Proc of the Systems & Software Technology Conference, June 2007, p. 
34. 
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Level Of Rigor (LOR) Software Development Products 

LOR 3 – Highest Code Walkthroughs 

 Condition / Decision structural test with safety 

mitigation records 

 All products in lower levels 

LOR 2 Design analysis with updates to requirements 

hazard analysis products 

 Functional hazard analysis 

 Functional testing 

 Stress and stability testing 

 All products in lower levels 

LOR 1 – Lowest Software Safety Requirements 

 Hazard Mitigation Traceability Matrix 

 Functional or system hazard analysis 

 Hazard control Records 

 Computer Program Change Requests 

 System or Functional Testing 

Table 5.   Example Required Level of Rigor Software Products 
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B. SOFTWARE RISK ASSESSMENT MATRIX AND SOFTWARE HAZARD 
RISK INDEX78 

 

Hazard Severity Category 

Software Control Category

Catastrophic Critical Marginal Negligible

I 1 1 3 5 

II 1 2 4 5 

III 2 3 5 5 

IV 3 4 5 5 

Table 6.   Software Risk Assessment Matrix 

  

  
Hazard Risk Index Criteria 

1 High Risk: Significant Analysis and 
Testing resources required. 

2 Medium Risk: Requirements and design 
Analysis and in-depth testing required. 

3-4 
Moderate Risk: High level analysis and 
testing acceptable with Managing Activity 
approval. 

5 Low Risk: Acceptable. 
 

Table 7.     Software Hazard Risk Index 

                                                 
78 J.B. Michael., SW4582 Weapon System Software Safety Lecture Notes, Naval Postgraduate 

School, 2006, Module 2, Part 3, p. 19-20. 
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